Mukul S Bansal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199876/publications.pdf

Version: 2024-02-01

33 papers

8,115 citations

623734 14 h-index 28 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

20933 citing authors

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
2	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
3	Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics, 2012, 28, i283-i291.	4.1	188
4	Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18,896 Gene Trees. Systematic Biology, 2011, 60, 117-125.	5.6	110
5	TreeFix: Statistically Informed Gene Tree Error Correction Using Species Trees. Systematic Biology, 2013, 62, 110-120.	5.6	101
6	Robinson-Foulds Supertrees. Algorithms for Molecular Biology, 2010, 5, 18.	1.2	88
7	Improved gene tree error correction in the presence of horizontal gene transfer. Bioinformatics, 2015, 31, 1211-1218.	4.1	64
8	RANGER-DTL 2.0: rigorous reconstruction of gene-family evolution by duplication, transfer and loss. Bioinformatics, 2018, 34, 3214-3216.	4.1	64
9	Pareto-optimal phylogenetic tree reconciliation. Bioinformatics, 2014, 30, i87-i95.	4.1	59
10	Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss. Journal of Computational Biology, 2013, 20, 738-754.	1.6	55
11	Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models. BMC Bioinformatics, 2010, 11, S42.	2.6	53
12	Systematic inference of highways of horizontal gene transfer in prokaryotes. Bioinformatics, 2013, 29, 571-579.	4.1	31
13	RecPhyloXML: a format for reconciled gene trees. Bioinformatics, 2018, 34, 3646-3652.	4.1	22
14	A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 848-850.	3.0	19
15	Assessing the accuracy of phylogenetic rooting methods on prokaryotic gene families. PLoS ONE, 2020, 15, e0232950.	2.5	19
16	An Integrated Reconciliation Framework for Domain, Gene, and Species Level Evolution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 63-76.	3.0	17
17	SaGePhy: an improved phylogenetic simulation framework for gene and subgene evolution. Bioinformatics, 2019, 35, 3496-3498.	4.1	17
18	Detecting Highways of Horizontal Gene Transfer. Journal of Computational Biology, 2011, 18, 1087-1114.	1.6	16

#	Article	IF	CITATIONS
19	PhyloFinder: An intelligent search engine for phylogenetic tree databases. BMC Evolutionary Biology, 2008, 8, 90.	3.2	14
20	Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1077-1090.	3.0	14
21	On the impact of uncertain gene tree rooting on duplication-transfer-loss reconciliation. BMC Bioinformatics, 2018, 19, 290.	2.6	13
22	Systematic Detection of Large-Scale Multigene Horizontal Transfer in Prokaryotes. Molecular Biology and Evolution, 2021, 38, 2639-2659.	8.9	10
23	On Inferring Additive and Replacing Horizontal Gene Transfers Through Phylogenetic Reconciliation. , 2019, , .		8
24	TNet: Phylogeny-Based Inference of Disease Transmission Networks Using Within-Host Strain Diversity. Lecture Notes in Computer Science, 2020, , 203-216.	1.3	8
25	TNet: Transmission Network Inference Using Within-Host Strain Diversity and its Application to Geographical Tracking of COVID-19 Spread. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 230-242.	3.0	5
26	Simultaneous Multi-Domain-Multi-Gene Reconciliation Under the Domain-Gene-Species Reconciliation Model. Lecture Notes in Computer Science, 2019, , 73-86.	1.3	4
27	Improved Duplication-Transfer-Loss Reconciliation with Extinct and Unsampled Lineages. Algorithms, 2021, 14, 231.	2.1	3
28	TreeFix-TP: Phylogenetic Error-Correction for Infectious Disease Transmission Network Inference. , 2020, , .		3
29	TreeFix-TP: Phylogenetic Error-Correction for Infectious Disease Transmission Network Inference. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2021, 26, 119-130.	0.7	3
30	TreeSolve: Rapid Error-Correction of Microbial Gene Trees. Lecture Notes in Computer Science, 2020, , 125-139.	1.3	2
31	Linear-time algorithms for phylogenetic tree completion under Robinson–Foulds distance. Algorithms for Molecular Biology, 2020, 15, 6.	1.2	1
32	Phylogenetic uncertainty and transmission network inference: Lessons from phylogenetic reconciliation., 2016,,.		0
33	A Supervised Machine Learning Approach for Distinguishing Between Additive and Replacing Horizontal Gene Transfers. , 2020, , .		0