Lyubov Bulusheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199865/publications.pdf Version: 2024-02-01

LYUROV RULLISHEVA

#	Article	IF	CITATIONS
1	Fluorographene: A Twoâ€Dimensional Counterpart of Teflon. Small, 2010, 6, 2877-2884.	10.0	1,146
2	Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49, 4013-4023.	10.3	322
3	Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid. ACS Catalysis, 2016, 6, 3442-3451.	11.2	270
4	Charge Transfer in the MoS ₂ /Carbon Nanotube Composite. Journal of Physical Chemistry C, 2011, 115, 21199-21204.	3.1	255
5	Single Isolated Pd ²⁺ Cations Supported on N-Doped Carbon as Active Sites for Hydrogen Production from Formic Acid Decomposition. ACS Catalysis, 2016, 6, 681-691.	11.2	252
6	Effect of nitrogen doping on Raman spectra of multiâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 1971-1974.	1.5	169
7	Influence of Niâ^'Co Catalyst Composition on Nitrogen Content in Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 9048-9053.	2.6	114
8	Copper on carbon materials: stabilization by nitrogen doping. Journal of Materials Chemistry A, 2017, 5, 10574-10583.	10.3	103
9	Double layer supercapacitor properties of onionâ€like carbon materials. Physica Status Solidi (B): Basic Research, 2008, 245, 2296-2299.	1.5	100
10	Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochimica Acta, 2007, 52, 5286-5293.	5.2	79
11	Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes. Journal of Alloys and Compounds, 2015, 621, 351-356.	5.5	77
12	Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials, 2012, 24, 2708-2715.	6.7	76
13	Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid. ChemSusChem, 2017, 10, 720-730.	6.8	76
14	<i>Ab initio</i> study of dielectric response of rippled graphene. Journal of Chemical Physics, 2011, 134, 244707.	3.0	72
15	Fluorination of Arc-Produced Carbon Material Containing Multiwall Nanotubes. Chemistry of Materials, 2002, 14, 1472-1476.	6.7	70
16	Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Materials, 2020, 30, 287-295.	18.0	66
17	Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon, 2014, 78, 137-146.	10.3	62
18	Anisotropy of Chemical Bonding in Semifluorinated Graphite C ₂ F Revealed with Angle-Resolved X-ray Absorption Spectroscopy. ACS Nano, 2013, 7, 65-74.	14.6	61

#	Article	IF	CITATIONS
19	Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Physical Chemistry Chemical Physics, 2015, 17, 23741-23747.	2.8	61
20	Graphene nanochains and nanoislands in the layers of room-temperature fluorinated graphite. Carbon, 2013, 59, 518-529.	10.3	57
21	Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites. Journal of Applied Physics, 2013, 113, .	2.5	56
22	Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow. Applied Surface Science, 2016, 385, 464-471.	6.1	54
23	Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Scientific Reports, 2015, 5, 9379.	3.3	52
24	Fluorine Patterning in Room-Temperature Fluorinated Graphite Determined by Solid-State NMR and DFT. Journal of Physical Chemistry C, 2013, 117, 7940-7948.	3.1	51
25	Stability of Fluorinated Double-Walled Carbon Nanotubes Produced by Different Fluorination Techniques. Chemistry of Materials, 2010, 22, 4197-4203.	6.7	49
26	Nanometer-Sized MoS ₂ Clusters on Graphene Flakes for Catalytic Formic Acid Decomposition. ACS Catalysis, 2014, 4, 3950-3956.	11.2	49
27	Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method. Electrochimica Acta, 2014, 139, 165-172.	5.2	49
28	Fluorinated cage multiwall carbon nanoparticles. Chemical Physics Letters, 2000, 322, 231-236.	2.6	46
29	Anisotropic electromagnetic properties of polymer composites containing oriented multiwall carbon nanotubes in respect to terahertz polarizer applications. Journal of Applied Physics, 2013, 114, .	2.5	42
30	A backside fluorine-functionalized graphene layer for ammonia detection. Physical Chemistry Chemical Physics, 2015, 17, 444-450.	2.8	42
31	Pd Clusters Supported on Amorphous, Low-Porosity Carbon Spheres for Hydrogen Production from Formic Acid. ACS Applied Materials & Interfaces, 2015, 7, 8719-8726.	8.0	41
32	Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries. Nanomaterials, 2020, 10, 2163.	4.1	41
33	Ni-N4 sites in a single-atom Ni catalyst on N-doped carbon for hydrogen production from formic acid. Journal of Catalysis, 2021, 402, 264-274.	6.2	41
34	Creation of nanosized holes in graphene planes for improvement of rate capability of lithium-ion batteries. Nanotechnology, 2018, 29, 134001.	2.6	40
35	Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy. Carbon, 2009, 47, 1629-1636.	10.3	39
36	Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Scientific Reports, 2015, 5, 13382.	3.3	39

#	Article	IF	CITATIONS
37	Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. ACS Nano, 2017, 11, 8643-8649.	14.6	38
38	Supercapacitor performance of nitrogen-doped carbon nanotube arrays. Physica Status Solidi (B): Basic Research, 2013, 250, 2586-2591.	1.5	36
39	Synthesis of nitrogenâ€containing porous carbon using calcium oxide nanoparticles. Physica Status Solidi (B): Basic Research, 2014, 251, 2607-2612.	1.5	36
40	Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes. Carbon, 2008, 46, 864-869.	10.3	35
41	Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes. Beilstein Journal of Nanotechnology, 2017, 8, 1688-1698.	2.8	35
42	Synthesis and structure of films consisting of carbon nanotubes oriented normally to the substrate. Technical Physics, 2007, 52, 1627-1631.	0.7	34
43	In Situ X-ray Photoelectron Spectroscopy Study of Lithium Interaction with Graphene and Nitrogen-Doped Graphene Films Produced by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5108-5114.	3.1	34
44	Field emission from products of nanodiamond annealing. Carbon, 2004, 42, 1099-1102.	10.3	33
45	Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide. Carbon, 2017, 118, 225-232.	10.3	33
46	Chlorinated holey double-walled carbon nanotubes for relative humidity sensors. Carbon, 2019, 148, 413-420.	10.3	33
47	Catalysts with single metal atoms for the hydrogen production from formic acid. Catalysis Reviews - Science and Engineering, 2022, 64, 835-874.	12.9	33
48	Arrays of carbon nanotubes aligned perpendicular to the substrate surface: Anisotropy of structure and properties. Nanotechnologies in Russia, 2008, 3, 191-200.	0.7	32
49	Formation of MoS ₂ nanoparticles on the surface of reduced graphite oxide. Physica Status Solidi (B): Basic Research, 2011, 248, 2740-2743.	1.5	32
50	Iron nanoparticles in aligned arrays of pure and nitrogen-doped carbon nanotubes. Carbon, 2012, 50, 2628-2634.	10.3	31
51	One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids. Beilstein Journal of Nanotechnology, 2017, 8, 2669-2679.	2.8	30
52	Comparative Study on the Electronic Structure of Arc-Discharge and Catalytic Carbon Nanotubes. Journal of Physical Chemistry B, 2001, 105, 4853-4859.	2.6	29
53	Gas-phase synthesis of nitrogen-containing carbon nanotubes and their electronic properties. Physics of the Solid State, 2002, 44, 652-655.	0.6	29
54	Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries. Journal of Power Sources, 2016, 311, 42-48.	7.8	29

#	Article	IF	CITATIONS
55	Soft X-ray spectroscopy and quantum chemistry characterization of defects in onion-like carbon produced by nanodiamond annealing. Diamond and Related Materials, 2007, 16, 1222-1226.	3.9	28
56	Catalytic synthesis of carbon nanotubes using Ni- and Co-doped calcium tartrates. Carbon, 2009, 47, 1701-1707.	10.3	26
57	Dielectric properties of polystyrene/onion-like carbon composites in frequency range of 0.5–500kHz. Composites Science and Technology, 2010, 70, 719-724.	7.8	26
58	Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering, 2016, 91, 505-512.	12.0	26
59	X-ray Spectroscopic and Quantum-Chemical Characterization of Hydrofullerene C60H36. Journal of Physical Chemistry A, 1999, 103, 716-720.	2.5	25
60	Anisotropic properties of carbonaceous material produced in arc discharge. Applied Physics A: Materials Science and Processing, 2001, 72, 481-486.	2.3	25
61	Orientation ordering of N2 molecules in vertically aligned CN x nanotubes. Applied Physics A: Materials Science and Processing, 2009, 94, 437-443.	2.3	25
62	Growth of CdS nanoparticles on the aligned carbon nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 10871.	2.8	25
63	Charge-induced formation of thin conducting layers on fluorinated graphite surface. Carbon, 2015, 82, 446-458.	10.3	25
64	Nanoscale coupling of MoS2 and graphene via rapid thermal decomposition of ammonium tetrathiomolybdate and graphite oxide for boosting capacity of Li-ion batteries. Carbon, 2021, 173, 194-204.	10.3	25
65	Development of graphene layers by reduction of graphite fluoride C ₂ F surface. Physica Status Solidi (B): Basic Research, 2009, 246, 2545-2548.	1.5	24
66	Electronic state of polyaniline deposited on carbon nanotube or ordered mesoporous carbon templates. Physica Status Solidi (B): Basic Research, 2011, 248, 2484-2487.	1.5	24
67	Hydrogen Production from Formic Acid over Au Catalysts Supported on Carbon: Comparison with Au Catalysts Supported on SiO2 and Al2O3. Catalysts, 2019, 9, 376.	3.5	24
68	Graphitization of 13C enriched fine-grained graphitic material under high-pressure annealing. Carbon, 2019, 141, 323-330.	10.3	24
69	Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films. Physica Status Solidi (B): Basic Research, 2011, 248, 2568-2571.	1.5	23
70	NEXAFS spectroscopy study of lithium interaction with nitrogen incorporated in porous graphitic material. Journal of Materials Science, 2019, 54, 11168-11178.	3.7	23
71	Growth of MoS2 layers on the surface of multiwalled carbon nanotubes. Inorganic Materials, 2007, 43, 236-239.	0.8	22
72	Effect of fabrication method on the structure and electromagnetic response of carbon nanotube/polystyrene composites in low-frequency and Ka bands. Composites Science and Technology, 2014, 102, 59-64.	7.8	22

#	Article	IF	CITATIONS
73	Encapsulation of molecular nitrogen in multiwall CNx nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4078-4081.	1.5	21
74	Leaky graphene oxide with high quantum yield and dual-wavelength photoluminescence. Carbon, 2016, 108, 461-470.	10.3	21
75	Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method. Materials, 2020, 13, 1173.	2.9	21
76	A study of the influence of structural imperfection on the electronic structure of carbon nanotubes by x-ray spectroscopy and quantum-chemical methods. Physics of the Solid State, 2002, 44, 663-665.	0.6	20
77	Effect of oxidation and heat treatment on the morphology and electronic structure of carbon-encapsulated iron carbide nanoparticles. Materials Chemistry and Physics, 2012, 135, 235-240.	4.0	20
78	Effects of the Carbon Support Doping with Nitrogen for the Hydrogen Production from Formic Acid over Ni Catalysts. Energies, 2019, 12, 4111.	3.1	20
79	Electronic state of nitrogen incorporated into CNx nanotubes. European Physical Journal D, 2005, 34, 271-274.	1.3	19
80	Orientational effect of the texture of a carbon-nanotube film on $CK\hat{I}\pm$ a radiation intensity. JETP Letters, 2005, 81, 34-38.	1.4	19
81	Nitrogen inserting in fluorinated graphene via annealing of acetonitrile intercalated graphite fluoride. Physica Status Solidi (B): Basic Research, 2014, 251, 2530-2535.	1.5	19
82	<i>In situ</i> XPS Observation of Selective NO _x Adsorption on the Oxygenated Graphene Films. Physica Status Solidi (B): Basic Research, 2018, 255, 1700267.	1.5	19
83	Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Topics in Catalysis, 2019, 62, 508-517.	2.8	19
84	Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Applied Surface Science, 2020, 504, 144357.	6.1	19
85	Electronic Structure of the Fluorinated Fullerene C60F48. Journal of Physical Chemistry A, 1999, 103, 9921-9924.	2.5	18
86	Manyâ€body effects in optical response of grapheneâ€based structures. International Journal of Quantum Chemistry, 2016, 116, 270-281.	2.0	18
87	Supercapacitor performance of binderâ€free buckypapers from multiwall carbon nanotubes synthesized at different temperatures. Physica Status Solidi (B): Basic Research, 2016, 253, 2406-2412.	1.5	18
88	Highâ€Pressure Highâ€Temperature Synthesis of MoS ₂ /Holey Graphene Hybrids and Their Performance in Liâ€Ion Batteries. Physica Status Solidi (B): Basic Research, 2018, 255, 1700262.	1.5	18
89	Structure and supercapacitor properties of few-layer low-fluorinated graphene materials. Journal of Materials Science, 2018, 53, 13053-13066.	3.7	18
90	Effect of boron and nitrogen additives on structure and transport properties of arc-produced carbon. Carbon, 2019, 143, 660-668.	10.3	18

#	Article	IF	CITATIONS
91	NATURE OF CHEMICAL BONDING IN THE FLUORINATED CARBON COMPOUNDS. Reviews in Inorganic Chemistry, 1999, 19, 79-116.	4.1	17
92	Electronic structure of C60F36 studied by quantum-chemical modeling of experimental photoemission and x-ray absorption spectra. Journal of Chemical Physics, 2009, 130, 014704.	3.0	17
93	Functional composition and super-capacitor properties of graphite oxide reduced with hot sulfuric acid. Physica Status Solidi (B): Basic Research, 2013, 250, 2747-2752.	1.5	17
94	Insight into effect of water additive on carbon remaining in metal alloys after high-pressure high-temperature diamond synthesis. Diamond and Related Materials, 2016, 70, 46-51.	3.9	17
95	Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes. Russian Journal of Electrochemistry, 2016, 52, 441-448.	0.9	17
96	Assessing carbon nanotube arrangement in polystyrene matrix byÂmagnetic susceptibility measurements. Carbon, 2016, 96, 1077-1083.	10.3	17
97	Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochimica Acta, 2018, 283, 45-53.	5.2	17
98	Role of interface interactions in the sensitivity of sulfur-modified single-walled carbon nanotubes for nitrogen dioxide gas sensing. Carbon, 2022, 186, 539-549.	10.3	17
99	Perforation of graphite in boiling mineral acid. Physica Status Solidi (B): Basic Research, 2012, 249, 2620-2624.	1.5	16
100	Optical absorption of boron nitride nanomaterials. Physica Status Solidi (B): Basic Research, 2008, 245, 2107-2110.	1.5	15
101	Modulation of electronic density in waved graphite layers. Synthetic Metals, 2010, 160, 1848-1855.	3.9	15
102	Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation. Applied Physics Letters, 2014, 104, .	3.3	15
103	Phosphorus incorporation into graphitic material via hot pressing of graphite oxide and triphenylphosphine. Synthetic Metals, 2019, 248, 53-58.	3.9	15
104	Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials, 2020, 10, 818.	4.1	15
105	Determining misorientation of graphite grains from the angular dependence of X-ray emission spectra. Journal of Experimental and Theoretical Physics, 2006, 103, 604-610.	0.9	14
106	Substitutional sites of nitrogen atoms in carbon nanotubes and their influence on fieldâ€emission characteristics. International Journal of Quantum Chemistry, 2011, 111, 2696-2704.	2.0	14
107	Nitrogen species in few-layer graphene produced by thermal exfoliation of fluorinated graphite intercalation compounds. Physica Status Solidi (B): Basic Research, 2015, 252, 2444-2450.	1.5	14
108	Thermally exfoliated fluorinated graphite for NO ₂ gas sensing. Physica Status Solidi (B): Basic Research, 2016, 253, 2492-2498.	1.5	14

#	Article	IF	CITATIONS
109	Bromine polycondensation in pristine and fluorinated graphitic carbons. Nanoscale, 2019, 11, 15298-15306.	5.6	14
110	Balanced kinetics between electrodes by carbon cloth@ZIF-8 for high rate performance zinc-ion hybrid capacitors. Chemical Communications, 2021, 57, 8778-8781.	4.1	14
111	"Missing―One-Dimensional Red-Phosphorus Chains Encapsulated within Single-Walled Carbon Nanotubes. ACS Nano, 2022, 16, 6002-6012.	14.6	14
112	Transport and magnetic properties of multiwall carbon nanotubes before and after bromination. Physics of the Solid State, 2002, 44, 659-662.	0.6	13
113	Interaction of NH ₃ with the reduced surface of graphite fluoride C ₂ F. Physica Status Solidi (B): Basic Research, 2010, 247, 3039-3042.	1.5	13
114	Multiscale characterization of 13C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon, 2017, 124, 161-169.	10.3	13
115	Tabby graphene: Dimensional magnetic crossover in fluorinated graphite. Scientific Reports, 2017, 7, 16544.	3.3	13
116	Charge polarization in partially lithiated single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 22592-22599.	2.8	13
117	Electronic Structure and Fieldâ€Emission Properties of Nitrogenâ€Doped Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 151-164.	2.1	12
118	Chlorination of perforated graphite via interaction with thionylchloride. Physica Status Solidi (B): Basic Research, 2014, 251, 2613-2619.	1.5	12
119	X-ray spectroscopy study of lithiated graphite obtained by thermal deposition of lithium. Journal of Structural Chemistry, 2017, 58, 1173-1179.	1.0	12
120	Effect of purification on the electron structure and field emission characteristics of a carbonaceous material containing single-wall carbon nanotubes. Journal of Experimental and Theoretical Physics, 2004, 99, 1244-1252.	0.9	11
121	A comparative study of argon ion irradiated pristine and fluorinated single-wall carbon nanotubes. Journal of Chemical Physics, 2010, 133, 224706.	3.0	11
122	XANES Investigation of Pristine and Fluorinated Single-Walled Carbon Nanotubes Before and After Annealing. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 595-599.	2.1	11
123	Layered compounds based on perforated graphene. Journal of Structural Chemistry, 2011, 52, 903-909.	1.0	11
124	Supercapacitor Performance of Aligned Carbon Nanotube/Polyaniline Composite Depending on the Duration of Aniline Polycondensation. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 519-522.	2.1	11
125	Structural Evolution and Magnetic Properties of Underfluorinated C2F. Journal of Superconductivity and Novel Magnetism, 2012, 25, 79-83.	1.8	11
126	Enhanced supercapacitance of vertically aligned multiâ€wall carbon nanotube array covered by MoS ₂ nanoparticles. Physica Status Solidi (B): Basic Research, 2016, 253, 2451-2456.	1.5	11

#	Article	IF	CITATIONS
127	Fluorinated Surface of Carbon Nanotube Buckypaper for Uniform Growth of CdS Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 19182-19190.	3.1	11
128	Effect of the graphite oxide composition on the structure of products obtained by sulfuric acid treatment at elevated temperatures. Journal of Structural Chemistry, 2017, 58, 1180-1186.	1.0	11
129	Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy. Nanotechnology, 2018, 29, 174003.	2.6	11
130	Electrical Transport in Devices Based on Edgeâ€Fluorinated Graphene. Advanced Electronic Materials, 2018, 4, 1800073.	5.1	11
131	Effect of Charge Transfer upon Li- and Na-Ion Insertion in Fine-Grained Graphitic Material as Probed by NMR. ACS Applied Materials & Interfaces, 2019, 11, 9291-9300.	8.0	11
132	Chemiresistive Properties of Imprinted Fluorinated Graphene Films. Materials, 2020, 13, 3538.	2.9	11
133	Porosity and composition of nitrogen-doped carbon materials templated by the thermolysis products of calcium tartrate and their performance in electrochemical capacitors. Journal of Alloys and Compounds, 2021, 858, 158259.	5.5	11
134	Fluorine patterning of graphene: effects of fluorine content and temperature. Nanoscale, 2021, 13, 1206-1212.	5.6	11
135	Electronic structure and arrangement of purified HiPco carbon nanotubes. Carbon, 2004, 42, 1095-1098.	10.3	10
136	Surface electronic structure of detonation nanodiamonds after oxidative treatment. Diamond and Related Materials, 2007, 16, 2090-2092.	3.9	10
137	Anisotropic Permittivity of Multi-Walled Carbon Nanotube/Polystyrene Composites. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 523-526.	2.1	10
138	Sensor properties of electron beam irradiated fluorinated graphite. Journal of Nanophotonics, 2015, 10, 012512.	1.0	10
139	Role of Defects in Carbon Nanotube Walls in Deposition of CdS Nanoparticles from a Chemical Bath. Journal of Physical Chemistry C, 2015, 119, 25898-25906.	3.1	10
140	Carbon Nanotube Synthesis Using Feâ€Mo/MgO Catalyst with Different Ratios of CH ₄ and H ₂ Gases. Physica Status Solidi (B): Basic Research, 2018, 255, 1700274.	1.5	10
141	Pressureâ€Assisted Interface Engineering in MoS ₂ /Holey Graphene Hybrids for Improved Performance in Liâ€ion Batteries. Energy Technology, 2019, 7, 1900659.	3.8	10
142	Effect of ultrasound pretreatment on bromination of double-walled carbon nanotubes. Synthetic Metals, 2020, 259, 116233.	3.9	10
143	The temperature dependence of the electrical resistivity and the negative magnetoresistance of carbon nanoparticles. Physics of the Solid State, 2002, 44, 487-489.	0.6	9
144	Optical Absorption and Raman Spectroscopy Study of the Fluorinated Doubleâ€Wall Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 233-238.	2.1	9

#	Article	IF	CITATIONS
145	Low-frequency (10–50 kHz) impedance of polystyrene-onion-like-carbon composites. Technical Physics Letters, 2009, 35, 85-88.	0.7	9
146	High reactivity of carbon nanotubes and fluorinated carbon nanotubes irradiated by Ar ⁺ ions. Physica Status Solidi (B): Basic Research, 2010, 247, 2691-2694.	1.5	9
147	Curvature-Induced Optical Transitions in Graphene. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 558-562.	2.1	9
148	Field emission properties of aligned CN _x nanotube arrays synthesized by pyrolysis of a ferrocene/acetonitrile aerosol at different temperatures. Physica Status Solidi (B): Basic Research, 2015, 252, 2524-2529.	1.5	9
149	Light polarizer in visible and THz range based on single-wall carbon nanotubes embedded into poly(methyl methacrylate) film. Laser Physics Letters, 2016, 13, 065901.	1.4	9
150	Electronic Structure of Fluorinated Graphene. , 2017, , 177-213.		9
151	Optimization of Parameters of Graphene Synthesis on Copper Foil at Low Methan Pressure. Journal of Structural Chemistry, 2018, 59, 759-765.	1.0	9
152	Holey graphene with enhanced near-infrared absorption: Experimental and DFT study. Applied Physics Letters, 2019, 114, .	3.3	9
153	Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture. Materials, 2020, 13, 219.	2.9	9
154	Creation of metasurface from vertically aligned carbon nanotubes as versatile platform for ultra-light THz components. Nanotechnology, 2020, 31, 255703.	2.6	9
155	Electronic state of nanodiamond/graphite interfaces. Applied Physics A: Materials Science and Processing, 2005, 81, 393-398.	2.3	8
156	The field emission properties of carbon nanotubes and SiC whiskers synthesized over Ni particles deposited in ion tracks in SiO2. Nanotechnologies in Russia, 2009, 4, 627-633.	0.7	8
157	Composites based on polyaniline and aligned carbon nanotubes. Polymer Science - Series B, 2010, 52, 101-108.	0.8	8
158	Synthesis of a hybrid material from CdS nanoparticles and carbon nanotubes. Russian Chemical Bulletin, 2010, 59, 1720-1723.	1.5	8
159	Electronic state of carbon in nanostructured composites produced by co-carbonization of aromatic heavy oil and ferrocene. Materials Chemistry and Physics, 2010, 122, 146-150.	4.0	8
160	X-Ray Absorption Spectra of N ₂ Molecules Embedded into CN _x Nanotubes as a Marker of Orientation Ordering of Array. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 551-557.	2.1	8
161	Electronic structure of the chlorinated fullerene C ₆₀ Cl ₃₀ studied by quantum chemical modeling of Xâ€ray absorption spectra. International Journal of Quantum Chemistry, 2011, 111, 2688-2695.	2.0	8
162	Crystal structures of 1,1,1-trifluoro-4-hydroxy-4-phenyl-but-3-en-2-one, 2,2,6,6-tetramethyl-3-hydroxy-hept-3-en-5-one, 2,2,6,6-tetramethyl-3-methylamino-hept-3-en-5-one and a study of the ability of these ligands to complex formation with metals. Journal of Structural Chemistry, 2012, 53, 740-747.	1.0	8

#	Article	IF	CITATIONS
163	Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 343-351.	3.1	8
164	Polymer-assisted forge-rolling disaggregation of detonation nanodiamonds and onion-like carbon. International Journal of Nanotechnology, 2015, 12, 182.	0.2	8
165	Synthesis of Porous Nanostructured MoS2 Materials in Thermal Shock Conditions and Their Performance in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10802-10813.	5.1	8
166	Anode materials from MoS ₂ and multilayered holey graphene for Li-ion batteries. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 328-334.	2.1	8
167	Room temperature synthesis of fluorinated graphite intercalation compounds with low fluorine loading of host matrix. Journal of Fluorine Chemistry, 2020, 232, 109482.	1.7	8
168	Redox reactions between acetonitrile and nitrogen dioxide in the interlayer space of fluorinated graphite matrices. Physical Chemistry Chemical Physics, 2021, 23, 10580-10590.	2.8	8
169	Electro- and Photoluminescence of CdS Nanoparticles Deposited on Carbon Nanotubes. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 36-41.	0.5	8
170	Effect of annealing on the optical absorption spectra of single-walled carbon nanotubes. Physics of the Solid State, 2006, 48, 1007-1011.	0.6	7
171	Study of thermal and mechanical properties of composites based on arc-grown carbon nanotubes and heat-resistant cyanoether binder. Polymer Science - Series A, 2007, 49, 702-707.	1.0	7
172	Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra. Journal of Experimental and Theoretical Physics, 2008, 107, 517-525.	0.9	7
173	NEXAFS detection of graphitic layers formed in the process of carbon nanotube arrays synthesis. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 115-118.	1.6	7
174	Phase states and magnetic properties of iron nanoparticles in carbon nanotube channels. Journal of Experimental and Theoretical Physics, 2009, 109, 254-261.	0.9	7
175	Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes. Physics of the Solid State, 2014, 56, 2537-2542.	0.6	7
176	Functional composition and electrochemical characteristics of oxidized nanosized carbon. Journal of Structural Chemistry, 2017, 58, 1187-1195.	1.0	7
177	Fluorination as Effective Method for Tuning the Electromagnetic Response of Graphene. Physica Status Solidi (B): Basic Research, 2018, 255, 1700226.	1.5	7
178	Structure and Electrochemical Properties of Carbon Nanotubes Synthesized with Catalysts Obtained by Decomposition of Co, Ni, and Fe Polyoxomolybdates Supported by MgO. Journal of Structural Chemistry, 2018, 59, 786-792.	1.0	7
179	Percolative Composites with Carbon Nanohorns: Low-Frequency and Ultra-High Frequency Response. Materials, 2019, 12, 1848.	2.9	7
180	The synthesis of biphenyl through C–H bond activation in benzene over a Pd catalyst supported on graphene oxide. New Journal of Chemistry, 2020, 44, 12178-12184.	2.8	7

#	Article	IF	CITATIONS
181	Field Emission Characteristics of Periodically Structured Carbon Nanotube Arrays. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 52-57.	0.5	7
182	Optical absorption and photoluminescence of partially fluorinated graphite crystallites. Carbon, 2022, 193, 98-106.	10.3	7
183	Study of the electronic structure and properties of 13C-isotope-based composites. Journal of Surface Investigation, 2007, 1, 645-650.	0.5	6
184	Influence of defects in the carbon network on the static polarizability of fullerenes. Physics of the Solid State, 2009, 51, 863-869.	0.6	6
185	Modification of the electronic structure in singleâ€walled carbon nanotubes with aromatic amines. Physica Status Solidi (B): Basic Research, 2011, 248, 2458-2461.	1.5	6
186	Crystallinity and electroluminescence efficiency of CdS nanoparticles grown on the aligned carbon nanotube array. Physica Status Solidi (B): Basic Research, 2012, 249, 2572-2575.	1.5	6
187	Structure of carbon nanoparticles synthesized by adiabatic compression of acetylene and their application in supercapacitors. Journal of Structural Chemistry, 2017, 58, 1196-1204.	1.0	6
188	Effect of Hot Pressing on the Electrochemical Performance of Multilayer Holey Graphene Materials in Liâ€ion Batteries. Physica Status Solidi (B): Basic Research, 2018, 255, 1800202.	1.5	6
189	Optical Properties of CdS Quantum Dots on Graphene. Journal of Structural Chemistry, 2018, 59, 870-876.	1.0	6
190	Structure, functional composition and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes synthesized using Co–Mo, Ni–Mo and Fe–Mo catalysts. Materials Chemistry and Physics, 2020, 255, 123563.	4.0	6
191	Modification of structure and conductivity of nanohorns by toluene addition in carbon arc. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 342-347.	2.1	6
192	Enhancement of Volumetric Capacitance of Binder-Free Single-Walled Carbon Nanotube Film via Fluorination. Nanomaterials, 2021, 11, 1135.	4.1	6
193	Maxwell-Garnett Description of Permittivity of Onion-Like Carbon–Polystyrene Composites. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 267-270.	0.5	6
194	Doping of Carbon Nanotubes with Encapsulated Phosphorus Chains. Inorganic Chemistry, 2022, 61, 9605-9614.	4.0	6
195	Fluorination of CN x Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 12, 99-104.	2.1	5
196	Growth of carbon nanotubes via chemical vapor deposition on Co catalyst nanoparticles dispersed in CaO. Inorganic Materials, 2008, 44, 213-218.	0.8	5
197	Multiscale characterization of synthetic diamonds obtained by gas-jet deposition. Journal of Physics: Conference Series, 2018, 1105, 012132.	0.4	5
198	Laser beam patterning of carbon nanotube arrays for the work of electron field emitters in technical vacuum. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114691.	3.5	5

#	Article	IF	CITATIONS
199	Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties. Materials, 2020, 13, 4420.	2.9	5
200	Bromination of carbon nanohorns to improve sodium-ion storage performance. Applied Surface Science, 2022, 580, 152238.	6.1	5
201	Lithium-induced intralayer rearrangement of molybdenum disulfide: Effect of graphene coating. Applied Surface Science, 2022, 598, 153846.	6.1	5
202	Electronic structure of diamond/graphite composite nanoparticles. European Physical Journal D, 2005, 34, 157-160.	1.3	4
203	X-ray emission and X-ray photoelectron spectroscopic studies of fullerene fluoride C60F24. Physics of the Solid State, 2007, 49, 1195-1200.	0.6	4
204	Comparative NEXAFS examination of singleâ€wall carbon nanotubes produced by different methods. Physica Status Solidi (B): Basic Research, 2009, 246, 2637-2640.	1.5	4
205	Magnetic Properties of Carbon Nanotubes with Low Content of Fe. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 569-573.	2.1	4
206	X-ray spectroscopic study of the electronic structure of boron carbonitride films obtained by chemical vapor deposition on Co/Si and CoO x /Si substrates. Journal of Structural Chemistry, 2012, 53, 690-698.	1.0	4
207	Spontaneous symmetry breaking during the switching of a buckled graphene membrane. JETP Letters, 2016, 103, 244-247.	1.4	4
208	Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films. Journal of Magnetism and Magnetic Materials, 2016, 415, 51-56.	2.3	4
209	Electromagnetic Properties of Reduced Graphene Oxide Buckypapers Obtained by Different Reduction Procedures. Physica Status Solidi (B): Basic Research, 2018, 255, 1700271.	1.5	4
210	Effect of Hydrogen Fluoride Addition and Synthesis Temperature on the Structure of Doubleâ€Walled Carbon Nanotubes Fluorinated by Molecular Fluorine. Physica Status Solidi (B): Basic Research, 2018, 255, 1700261.	1.5	4
211	Continuous synthesis of aligned carbon nanotube arrays on copper substrates using laser-activated gas jet. Applied Physics Letters, 2018, 113, .	3.3	4
212	Sodium storage properties of thin phosphorus-doped graphene layers developed on the surface of nanodiamonds under hot pressing conditions. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 335-341.	2.1	4
213	X-ray photoelectron study of electrical double layer at graphene/phosphoric acid interface. Applied Surface Science, 2020, 515, 146007.	6.1	4
214	Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water. Nanomaterials, 2021, 11, 992.	4.1	4
215	Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation. Nanomaterials, 2022, 12, 231.	4.1	4
216	Cucurbit[6]uril as a co-catalyst forÂhydrogen production from formic acid. Materials Today Energy, 2022, 26, 100998.	4.7	4

#	Article	IF	CITATIONS
217	X-ray spectroscopic study of graphite fluoride (C2F) n intercalated with benzene. Russian Chemical Bulletin, 2000, 49, 709-712.	1.5	3
218	XAES study of carbon fluoride and carbon materials. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 243-249.	1.7	3
219	Fluorination of multiwall nitrogen-doped carbon nanotubes. Russian Journal of Inorganic Chemistry, 2006, 51, 613-618.	1.3	3
220	X-ray spectral study of a material containing BN nanostructures. Journal of Structural Chemistry, 2008, 49, 40-46.	1.0	3
221	Photoluminescence of CdS nanoparticles grown on carbon nanotubes covered by a dielectric polymer layer. Physica Status Solidi (B): Basic Research, 2013, 250, 2759-2764.	1.5	3
222	Crystal and molecular structures of bis(2,2,6,6-tetramethyl-3-methylaminoheptan-5-onate) copper(II) and nickel(II). Journal of Structural Chemistry, 2014, 55, 488-492.	1.0	3
223	Revealing distortion of carbon nanotube walls via angle-resolved X-ray spectroscopy. Current Applied Physics, 2015, 15, 1111-1116.	2.4	3
224	An X-ray spectroscopy study of CdS nanoparticles formed by the Langmuir–Blodgett technique on the surface of carbon nanotube arrays. Journal of Structural Chemistry, 2017, 58, 876-884.	1.0	3
225	Magnetic Properties of 1D Iron–Sulfur Compounds Formed Inside Singleâ€Walled Carbon Nanotubes. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000291.	2.4	3
226	Iron induced porosity of the templated carbon for enhancement of electrochemical capacitance. Applied Surface Science, 2021, 543, 148565.	6.1	3
227	Synthesis of CNx nanotubes using catalysts prepared from zinc and nickel bimaleates. Inorganic Materials, 2007, 43, 945-950.	0.8	2
228	Formation of Mo3S4Nanoparticles on the Graphitic Substrate. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 19, 39-43.	2.1	2
229	Graphitic and pyridinic nitrogen in carbon nanotubes: energetic and polarization aspects. Journal of Nanophotonics, 2015, 10, 012510.	1.0	2
230	The influence of water–organic solvent composition on the morphology and luminescent properties of CdS nanoparticles obtained by chemical precipitation. Colloid Journal, 2016, 78, 30-36.	1.3	2
231	Localization of Ï€â€electron density in twisted bilayer graphene. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600367.	2.4	2
232	Electrically activated chemical bath deposition of CdS on carbon nanotube arrays. Synthetic Metals, 2021, 273, 116671.	3.9	2
233	Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation. Materials, 2021, 14, 3275.	2.9	2
234	X-ray fluorescent spectroscopy and quantum chemistry investigation of electronic structure of the palladium[60]fullerene complex with bidentate ligand 1,1′-bis(diphenylphosphino)ferrocene. Journal of Molecular Structure, 2005, 749, 193-199.	3.6	1

#	Article	IF	CITATIONS
235	Electronic interactions in two-dimensional polymers of the C60 fullerene. Physics of the Solid State, 2006, 48, 185-191.	0.6	1
236	Electrochemical Properties of the Ultrasonically Activated Thermally Expanded Graphite–Polyaniline Hybrid Material. Physica Status Solidi (B): Basic Research, 2018, 255, 1700516.	1.5	1
237	On the stability of Li intercalated fine-grained graphitic material. Carbon, 2021, 173, 792-799.	10.3	1
238	Comment on "On the Difficulties and Pitfalls with the Analysis of Solid‑State 13C NMR Spectra in Graphitic Materials― Applied Magnetic Resonance, 2021, 52, 81-90.	1.2	1
239	Investigation of electronic interactions in solid hydrogen fluoride. Journal of Structural Chemistry, 1997, 38, 570-577.	1.0	0
240	Joint X-ray spectroscopic and quantum-chemical study of the electronic structure of pentafluorophenylalkyl ethers. Russian Chemical Bulletin, 1998, 47, 2362-2370.	1.5	0
241	Spatial structure of carbon nanotubes produced in arc discharge. , 1998, , .		0
242	Structure of chemical bonding in polymerized fullerene C/sub 60/. , 1998, , .		0
243	Electron interactions in the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex. Russian Chemical Bulletin, 2005, 54, 2730-2734.	1.5	Ο
244	Optical Absorption of Singleâ€Wall Carbon Nanotubes Produced by Arcâ€Discharge Method with Different Concentration of Ni/Co Catalyst. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 12, 287-292.	2.1	0
245	Electronic state of carbon in carbonaceous chondrite meteorites. Physica Status Solidi (B): Basic Research, 2007, 244, 3955-3959.	1.5	0
246	Effect of iron nanoparticles in the films of composite materials and carbon nanotubes on the angular dependence of X-ray emission. Journal of Structural Chemistry, 2011, 52, 50-54.	1.0	0
247	5. Characterization methods. , 2018, , 261-408.		0
248	X-ray photoelectron spectroscopy study of the interaction of lithium with graphene. Physical Sciences Reviews, 2018, 3, .	0.8	0