Andrew L Rohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199433/publications.pdf

Version: 2024-02-01

126 6,900 39 80
papers citations h-index g-index

129 129 7102
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A self-supervised learning based approach to analyze Martian water–ice cloud properties for planetary atmospheric applications. Acta Astronautica, 2021, 181, 1-13.	3.2	3
2	Stabilization of Aragonite: Role of Mg ²⁺ and Other Impurity Ions. Crystal Growth and Design, 2020, 20, 5006-5017.	3.0	24
3	Tip dependence of three-dimensional scanning force microscopy images of calcite–water interfaces investigated by simulation and experiments. Nanoscale, 2020, 12, 12856-12868.	5.6	15
4	Why Are Some Crystals Straight?. Journal of Physical Chemistry C, 2020, 124, 15616-15624.	3.1	26
5	Using Molecular Modelling to Understand and Predict the Impact of Organic Additives as Crystal Growth Modifiers. Australian Journal of Chemistry, 2020, 73, 724.	0.9	3
6	Can macrocyclic phosphonate molecules inhibit barium sulfate crystallization?. CrystEngComm, 2019, 21, 807-815.	2.6	4
7	Atomistic Simulation of Atomic Force Microscopy Imaging of Hydration Layers on Calcite, Dolomite, and Magnesite Surfaces. Journal of Physical Chemistry C, 2019, 123, 14985-14992.	3.1	30
8	Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy. Physical Review Letters, 2018, 120, 116101.	7.8	58
9	Timoshenko Bending and Eshelby Twisting Predicted in Molecular Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 25085-25091.	3.1	9
10	Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	22
11	Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities. Measurement Science and Technology, 2017, 28, 034004.	2.6	6
12	Synthesis, Stereochemistry and Antiparasitic Activity of Derivatives of $(4 < i > R < / i >)$ -4,6-Dihydroxy- $< i > N < / i >$ -methyl-1,2,3,4-tetrahydroisoquinoline. ChemistrySelect, 2017, 2, 2006-2013.	1.5	4
13	Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chemical Science, 2017, 8, 4926-4940.	7.4	97
14	The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nature Communications, 2017, 8, 15553.	12.8	65
15	Difference Hirshfeld fingerprint plots: a tool for studying polymorphs. CrystEngComm, 2017, 19, 2207-2215.	2.6	20
16	Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM. Scientific Reports, 2017, 7, 16257.	3.3	6
17	A Supramolecular Ice Growth Inhibitor. Journal of the American Chemical Society, 2016, 138, 13396-13401.	13.7	83
18	Structure, Energetics, and Dynamics of Screw Dislocations in Even <i>n</i> -Alkane Crystals. Journal of Physical Chemistry Letters, 2016, 7, 3112-3117.	4.6	11

#	Article	IF	CITATIONS
19	Can Point Defects in Surfaces in Solution be Atomically Resolved by Atomic Force Microscopy?. Physical Review Letters, 2016, 117, 226101.	7.8	18
20	Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy. Nanotechnology, 2016, 27, 415709.	2.6	20
21	Resorcinol Crystallization from the Melt: A New Ambient Phase and New "Riddles― Journal of the American Chemical Society, 2016, 138, 4881-4889.	13.7	74
22	Silver(i), gold(i) and palladium(ii) complexes of a NHC-pincer ligand with an aminotriazine core: a comparison with pyridyl analogues. Dalton Transactions, 2016, 45, 1484-1495.	3.3	15
23	Dislocation-Actuated Growth and Inhibition of Hexagonal <scp>l</scp> -Cystine Crystallization at the Molecular Level. Crystal Growth and Design, 2015, 15, 921-934.	3.0	28
24	Benchmarking Calculated Lattice Parameters and Energies of Molecular Crystals Using van der Waals Density Functionals. Journal of Chemical Theory and Computation, 2014, 10, 3423-3437.	5.3	56
25	van der <scp>W</scp> aals corrected density functional calculations of the adsorption of benzene on the Cu (111) surface. Journal of Computational Chemistry, 2014, 35, 2263-2271.	3.3	11
26	Effect of Lanthanum on the Crystal Growth of Barium Sulfate. Crystal Growth and Design, 2014, 14, 1650-1658.	3.0	20
27	Structural Correspondence of Solution, Liquid Crystal, and Crystalline Phases of the Chromonic Mesogen Sunset Yellow. Crystal Growth and Design, 2014, 14, 4166-4176.	3.0	21
28	Twisted Aspirin Crystals. Journal of the American Chemical Society, 2013, 135, 3395-3398.	13.7	86
29	Chemical evolution via beta decay: a case study in strontium-90. Journal of Physics Condensed Matter, 2013, 25, 065504.	1.8	17
30	Electronic structure of phosphorus and arsenicî´-doped germanium. Physical Review B, 2013, 88, .	3.2	4
31	Noncovalent Interactions in SIESTA Using the vdW-DF Functional: S22 Benchmark and Macrocyclic Structures. Journal of Chemical Theory and Computation, 2012, 8, 281-289.	5.3	26
32	Prediction of Soai Reaction Enantioselectivity Induced by Crystals of <i>N</i> -(2-Thienylcarbonyl)glycine. Crystal Growth and Design, 2012, 12, 2138-2145.	3.0	32
33	Computational methodology for chirality determination in the Soai reaction by crystals: \hat{l}^3 -glycine. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	3
34	<i>Ab Initio</i> Molecular Dynamics Simulations of (101) Surfaces of Potassium Dihydrogenphosphate. Journal of Chemical Theory and Computation, 2011, 7, 1604-1609.	5.3	8
35	Investigation into the effects of phosphonic inhibitors on the formation of calcium sulfate scales. Desalination and Water Treatment, 2011, 29, 294-301.	1.0	10
36	Controlling Mesoscale Crystal Helicity with Additives, Again. Crystal Growth and Design, 2011, 11, 2070-2073.	3.0	31

#	Article	IF	Citations
37	Effects of Process Parameters on Gypsum Scale Formation in Pipes. Chemical Engineering and Technology, 2011, 34, 1003-1009.	1.5	20
38	Implications of transmutation on the defect chemistry in crystalline waste forms. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3261-3264.	1.4	14
39	A NOVEL SPINNING DISC CONTINUOUS STIR TANK AND SETTLER REACTOR (SDCSTR) MODEL FOR CONTINUOUS SYNTHESIS OF TITANIA: A PHENOMENOLOGICAL MODEL. Chemical Engineering Communications, 2010, 198, 73-84.	2.6	4
40	Effects of Organic Additives on Calcium Sulfate Scaling in Pipes. Australian Journal of Chemistry, 2009, 62, 927.	0.9	21
41	Understanding barium sulfate precipitation onto stainless steel. Applied Surface Science, 2008, 254, 3459-3468.	6.1	18
42	Growth modification of hematite by phosphonate additives. Journal of Crystal Growth, 2008, 310, 688-698.	1.5	11
43	Hirshfeld Surfaces Identify Inadequacies in Computations of Intermolecular Interactions in Crystals: Pentamorphic 1,8-Dihydroxyanthraquinone. Crystal Growth and Design, 2008, 8, 4517-4525.	3.0	482
44	A study of the high-pressure polymorphs of L-serine using ab initio structures and PIXEL calculations. CrystEngComm, 2008, 10, 1154.	2.6	48
45	An efficient technique for the prediction of solvent-dependent morphology: the COSMIC method. Molecular Simulation, 2007, 33, 1237-1246.	2.0	24
46	Mechanisms of Dye Incorporation into Potassium Sulfate: Computational and Experimental Studies. Journal of Physical Chemistry C, 2007, 111, 9283-9289.	3.1	8
47	Effects of temperature on the scaling of calcium sulphate in pipes. Powder Technology, 2007, 179, 31-37.	4.2	106
48	The interaction of EDTA with barium sulfate. Journal of Colloid and Interface Science, 2007, 316, 553-561.	9.4	60
49	Understanding the mechanism by which nitrilotriacetic acid interacts with precipitating barium sulfate. CrystEngComm, 2006, 8, 869.	2.6	18
50	Molecular Modeling of Phosphonate Molecules onto Barium Sulfate Terraced Surfaces. Journal of Physical Chemistry B, 2006, 110, 7414-7424.	2.6	55
51	Ab Initio Simulations of the (101) Surfaces of Potassium Dihydrogenphosphate (KDP). Journal of Chemical Theory and Computation, 2006, 2, 797-800.	5.3	5
52	Comment on "Examination of Spinel and Nonspinel Structural Models for γ-Al2O3by DFT and Rietveld Refinement Simulations― Journal of Physical Chemistry B, 2006, 110, 20721-20723.	2.6	33
53	What is Syncrystallization? States of the pH Indicator Methyl Red in Crystals of Phthalic Acid. Journal of the American Chemical Society, 2006, 128, 5548-5559.	13.7	28
54	The interstellar gas-phase formation of CO2 – Assisted or not by water molecules?. Chemical Physics, 2006, 320, 214-228.	1.9	28

#	Article	IF	CITATIONS
55	Robert Boyle's chiral crystal chemistry: Computational re-evaluation of enantioselective adsorption on quartz. Chirality, 2006, 18, 127-133.	2.6	15
56	Quantum mechanical vs. empirical potential modeling of uranium dioxide (UO2) surfaces: (111), (110), and (100). American Mineralogist, 2006, 91, 1761-1772.	1.9	47
57	Incorporation of impurity anions into DSP: insights into structure and stability from computer modelling. Molecular Simulation, 2006, 32, 35-44.	2.0	8
58	Calculation of Attachment Energies and Relative Volume Growth Rates As an Aid to Polymorph Prediction. Crystal Growth and Design, 2005, 5, 879-885.	3.0	52
59	Linking Additive Structures to Nanoparticle Properties. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 51-54.	0.1	0
60	Empirical molecular modelling of crystal growth modifiers. Molecular Simulation, 2005, 31, 393-398.	2.0	10
61	Comparison of the effect growth inhibitors have on an isostructural pair of salts. CrystEngComm, 2005, 7, 320.	2.6	5
62	Interatomic Potentials for Simulating MnO2Polymorphs. Molecular Simulation, 2005, 31, 25-32.	2.0	4
63	Determination of the structure of \hat{I}^3 -alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model. Physical Review B, 2005, 71, .	3.2	139
64	GDIS: a visualization program for molecular and periodic systems. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	97
65	The Epitaxial Growth of Cholesterol Crystals from Bile Solutions on Calcite Substrates. Journal of the American Chemical Society, 2004, 126, 7915-7924.	13.7	38
66	Luminescent Probes of Crystal Growth: Surface Charge and Polar Axis Sense in Dye-Doped Potassium Hydrogen Phthalate. Angewandte Chemie - International Edition, 2004, 43, 5328-5331.	13.8	34
67	Boehmite Derived γ-Alumina System. Part 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γ′-Alumina ChemInform, 2004, 35, no.	0.0	0
68	The effect of calcium ions on the precipitation of barium sulphate 1: calcium ions in the absence of organic additives. Journal of Crystal Growth, 2004, 262, 572-580.	1.5	32
69	The effect of calcium cations on the precipitation of barium sulfate 2: calcium ions in the presence of organic additives. Journal of Crystal Growth, 2004, 270, 593-603.	1.5	18
70	Boehmite Derived γ-Alumina System. 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γâ€~-Alumina. Chemistry of Materials, 2004, 16, 220-236.	6.7	176
71	Boehmite-Derived \hat{I}^3 -Alumina System. 2. Consideration of Hydrogen and Surface Effects. Chemistry of Materials, 2004, 16, 1914-1923.	6.7	70
72	The role of phosphonate speciation on the inhibition of barium sulfate precipitation. Journal of Crystal Growth, 2003, 249, 584-593.	1.5	38

#	Article	IF	CITATIONS
73	Adsorption energetics of potassium sulfate dye inclusion crystals. Journal of Molecular Structure, 2003, 647, 65-73.	3.6	6
74	The General Utility Lattice Program (GULP). Molecular Simulation, 2003, 29, 291-341.	2.0	1,921
75	Computer prediction of crystal morphology. Current Opinion in Solid State and Materials Science, 2003, 7, 21-26.	11.5	57
76	Evidence from surface phonons for the $(2 \tilde{A}-1)$ reconstruction of the (101) 4) surface of calcite from computer simulation. American Mineralogist, 2003, 88, 921-925.	1.9	100
77	Incorporation of Cyano Transition Metal Complexes in KCl Crystals—Experimental and Computational Studies. Australian Journal of Chemistry, 2003, 56, 675.	0.9	8
78	IN SITU CHARACTERISATION OF CALCITE GROWTH AND INHIBITION USING ATOMIC FORCE MICROSCOPY. International Journal of Modern Physics B, 2002, 16, 25-33.	2.0	20
79	Toward a Fundamental Understanding of Molecular Recognition:Â A Synthetic and Computational Study of Morphological Control of Ca3Al2(OH)12. Journal of Physical Chemistry B, 2002, 106, 5820-5826.	2.6	9
80	Morphological control of Ca3Al2(OH)12. Journal of Crystal Growth, 2002, 234, 255-262.	1.5	12
81	Investigation into the effect of phosphonate inhibitors on barium sulfate precipitation. Journal of Crystal Growth, 2002, 237-239, 424-429.	1.5	54
82	An ab initio study of the influence of crystal packing on the host–guest interactions of calix[4]arene crystal structures. Chemical Communications, 2001, , 1626-1627.	4.1	18
83	An ab Initio Study of the Structure and Properties of Aluminum Hydroxide:Â Gibbsite and Bayerite. Journal of Physical Chemistry B, 2001, 105, 10236-10242.	2.6	86
84	A computational investigation of the structure of \hat{l}^2 -alumina using interatomic potentials. Journal of Materials Chemistry, 2001, 11, 3310-3316.	6.7	8
85	Anomalous behaviour within a systematic series of barium sulfate growth modifiers. CrystEngComm, 2001, 3, 165.	2.6	9
86	Atomistic Modeling of Gibbsite:Â Cation Incorporation. Journal of Physical Chemistry B, 2001, 105, 5099-5105.	2.6	19
87	Imaging problems on insulators: What can be learnt from NC-AFM modelling on CaF2?. Applied Physics A: Materials Science and Processing, 2001, 72, S31-S34.	2.3	13
88	Modelling non-stationary precipitation systems: sources of error and their propagation. Chemical Engineering Science, 2000, 55, 6037-6047.	3.8	8
89	Atomistic modelling of gibbsite: surface structure and morphology. Journal of Crystal Growth, 2000, 209, 159-166.	1.5	33
90	Molecular modeling of water adsorption on hematite. Physical Chemistry Chemical Physics, 2000, 2, 3209-3216.	2.8	74

#	Article	IF	Citations
91	Model of noncontact scanning force microscopy on ionic surfaces. Physical Review B, 1999, 59, 2436-2448.	3.2	134
92	Contrast mechanism in non-contact SFM imaging of ionic surfaces. Applied Surface Science, 1999, 140, 327-332.	6.1	29
93	Crystallisation of $\hat{l}\pm$ -lactose monohydrate from dimethyl sulfoxide (DMSO) solutions: influence of \hat{l}^2 -lactose. Journal of Crystal Growth, 1999, 205, 368-374.	1.5	60
94	Predicting Guest Orientations in Layered Double Hydroxide Intercalates. Chemistry of Materials, 1999, 11, 1194-1200.	6.7	63
95	Structure, stability and morphology of stoichiometric ceria crystallites. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 427-434.	1.7	109
96	lonic structure in caustic aluminate solutions and the precipitation of gibbsite. Journal of the Chemical Society Dalton Transactions, 1998, , 3911-3918.	1.1	41
97	Incorporation of growth-inhibiting diphosphonates into steps on the calcite cleavage plane surface. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3685-3693.	1.7	51
98	Theoretical Investigation of the Nature of Aluminum-Containing Species Present in Alkaline Solution. Journal of Physical Chemistry B, 1998, 102, 10372-10382.	2.6	41
99	Does AFM Really See Atoms at the Surface?. Materials Science Forum, 1997, 239-241, 651-656.	0.3	0
100	Predicting the occurrence of reflection twins. Journal of Crystal Growth, 1997, 178, 402-409.	1.5	18
101	Hydrogen Dissociation on Reconstructed ZnO Surfaces. The Journal of Physical Chemistry, 1996, 100, 9054-9063.	2.9	57
102	Interactions at the Organic/Inorganic Interface:Â Molecular Modeling of the Interaction between Diphosphonates and the Surfaces of Barite Crystals. Journal of the American Chemical Society, 1996, 118, 642-648.	13.7	77
103	Computer modelling of V2O5: surface structures, crystal morphology and ethene sorption. Journal of Materials Chemistry, 1996, 6, 653.	6.7	26
104	Molecular Mechanics Study of Oligomeric Models for Poly(ferrocenylsilanes) Using the Extensible Systematic Forcefield (ESFF). Journal of the American Chemical Society, 1996, 118, 7578-7592.	13.7	132
105	Molecular-mechanics study of oligomeric models for poly(ferrocenylsilanes) using the ESFF forcefield. Chemical Communications, 1996, , 257.	4.1	17
106	Simulating the structures of crystals and their surfaces. Topics in Catalysis, 1996, 3, 135-167.	2.8	7
107	A model of the interaction of ionic tips with ionic surfaces for interpretation of scanning force microscope images. Topics in Catalysis, 1996, 3, 221-247.	2.8	14
108	Calculating the effects of surface relaxation on morphology. Journal of Crystal Growth, 1996, 166, 84-90.	1.5	32

#	Article	IF	Citations
109	Theoretical Models of the Polar Cu2O(100) Cu+-Terminated Surface. The Journal of Physical Chemistry, 1996, 100, 294-298.	2.9	30
110	Structure of small Ni clusters on SiO2. Catalysis Letters, 1995, 30, 77-85.	2.6	12
111	Model of scanning force microscopy on ionic surfaces. Physical Review B, 1995, 52, 11398-11411.	3.2	19
112	Properties of small clusters at ionic surfaces: (NaCl)nclusters (n=1–48) at the (100) MgO surface. Physical Review B, 1995, 51, 13631-13644.	3.2	22
113	Theoretical study of nanoclusters at ionic surfaces: Properties of (NaCl)n clusters (n=1–48) at the (100) MgO surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1190.	1.6	5
114	Atomistic modeling of imaging of ionic surfaces with a scanning force microscope. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1155.	1.6	10
115	Lateral and friction forces originating during force microscope scanning of ionic surfaces. Surface Science, 1995, 343, 273-287.	1.9	32
116	Computational investigation of surface structural relaxation in crystalline urea. Journal of Materials Chemistry, 1995, 5, 133.	6.7	29
117	MARVIN: a new computer code for studying surfaces and interfaces and its application to calculating the crystal morphologies of corundum and zircon. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 925.	1.7	246
118	Modelling the morphology of minerals by computer. Mineralogical Magazine, 1995, 59, 607-615.	1.4	6
119	Atomistic theory of the interaction between AFM tips and ionic surfaces. Journal of Physics Condensed Matter, 1994, 6, 1825-1846.	1.8	66
120	Calculation of the morphology of silica sodalite. Journal of the Chemical Society Chemical Communications, 1994, , 1369.	2.0	25
121	Size and shape of molecular ions and their relevance to the packing of the  soft salts'. Inorganica Chimica Acta, 1993, 212, 5-13.	2.4	12
122	Calculated bulk and surface properties of sulfates. Faraday Discussions, 1993, 95, 273.	3.2	108
123	Relationships between computed and experimentally determined molecular volumes and radii. Journal of the Chemical Society Dalton Transactions, 1993, , 423.	1.1	13
124	The size and shape of molecular ions and their relevance to the packing of the hexafluorophosphate salts. Journal of the Chemical Society Dalton Transactions, 1992, , 3541.	1.1	15
125	Size and shape characteristics of inorganic molecules and ions and their relevance to molecular packing problems. Journal of the Chemical Society Dalton Transactions, 1991, , 3419.	1.1	77
126	Size and shape characteristics of inorganic molecular ions and their relevance to crystallization problems. Inorganic Chemistry, 1991, 30, 3769-3771.	4.0	78