
Evangelos Tzolos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary 18F-Sodium Fluoride Uptake Predicts Outcomes in Patients With Coronary Artery Disease. Journal of the American College of Cardiology, 2020, 75, 3061-3074.	2.8	100
2	Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. The Lancet Digital Health, 2022, 4, e256-e265.	12.3	85
3	Pericoronary Adipose Tissue Attenuation, Low-Attenuation Plaque Burden, and 5-Year Risk of Myocardial Infarction. JACC: Cardiovascular Imaging, 2022, 15, 1078-1088.	5.3	46
4	Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiology Clinics, 2020, 38, 1-12.	2.2	43
5	¹⁸ F-Sodium Fluoride (¹⁸ F-NaF) for Imaging Microcalcification Activity in the Cardiovascular System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1620-1626.	2.4	39
6	Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. Journal of Cardiovascular Computed Tomography, 2021, 15, 81-84.	1.3	35
7	Machine Learning with ¹⁸ F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction. Journal of Nuclear Medicine, 2022, 63, 158-165.	5.0	34
8	Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation. Circulation, 2021, 144, 1396-1408.	1.6	32
9	Thoracic Aortic 18F-Sodium Fluoride Activity and Ischemic Stroke in Patients With Established Cardiovascular Disease. JACC: Cardiovascular Imaging, 2022, 15, 1274-1288.	5.3	27
10	Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity. Journal of Nuclear Cardiology, 2022, 29, 126-135.	2.1	26
11	Bypass Grafting and Native Coronary Artery Disease Activity. JACC: Cardiovascular Imaging, 2022, 15, 875-887.	5.3	24
12	Quantifying microcalcification activity in the thoracic aorta. Journal of Nuclear Cardiology, 2022, 29, 1372-1385.	2.1	21
13	Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction. Journal of Nuclear Cardiology, 2021, 28, 1718-1725.	2.1	20
14	Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart, 2022, 108, 61-66.	2.9	18
15	Respiration-averaged CT versus standard CT attenuation map for correction of 18F-sodium fluoride uptake in coronary atherosclerotic lesions on hybrid PET/CT. Journal of Nuclear Cardiology, 2022, 29, 430-439.	2.1	17
16	Plaque Burden and 1-Year Outcomes inÂAcute Chest Pain. JACC: Cardiovascular Imaging, 2022, 15, 1916-1925.	5.3	16
17	Aortic valve stenosis—multimodality assessment with PET/CT and PET/MRI. British Journal of Radiology, 2020, 93, 20190688.	2.2	14
18	Latest Advances in Multimodality Imaging of Aortic Stenosis. Journal of Nuclear Medicine, 2022, 63,	5.0	14

353-358.

EVANGELOS TZOLOS

#	Article	IF	CITATIONS
19	Categorising myocardial infarction with advanced cardiovascular imaging. Lancet, The, 2021, 398, e9.	13.7	13
20	The accuracy of coronary CT angiography in patients with coronary calcium score above 1000 Agatston Units: Comparison with quantitative coronary angiography. Journal of Cardiovascular Computed Tomography, 2021, 15, 412-418.	1.3	13
21	Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks. Journal of Nuclear Cardiology, 2023, 30, 604-615.	2.1	11
22	Detection of small coronary calcifications in patients with Agatston coronary artery calcium score of zero. Journal of Cardiovascular Computed Tomography, 2022, 16, 150-154.	1.3	7
23	Hepatosteatosis and Atherosclerotic Plaque at Coronary CT Angiography. Radiology: Cardiothoracic Imaging, 2022, 4, e210260.	2.5	6
24	18F-SODIUM FLUORIDE CORONARY UPTAKE PREDICTS MYOCARDIAL INFARCTIONS IN PATIENTS WITH KNOWN CORONARY ARTERY DISEASE. Journal of the American College of Cardiology, 2020, 75, 3667.	2.8	5
25	Coronary Computed Tomography Angiography Improving Outcomes in Patients with Chest Pain. Current Cardiovascular Imaging Reports, 2019, 12, 15.	0.6	4
26	Anatomical validation of automatic respiratory motion correction for coronary 18Fâ€sodium fluoride positron emission tomography by expert measurements from fourâ€dimensional computed tomography. Medical Physics, 0, , .	3.0	4
27	Threshold effect for lipoprotein(a) in aortic stenosis. Heart, 2021, 107, 1367-1368.	2.9	3
28	Aortic valve imaging using 18F-sodium fluoride: impact of triple motion correction. EJNMMI Physics, 2022, 9, 4.	2.7	3
29	Response by Kwiecinski et al to Letter Regarding Article, "Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation― Circulation, 2022, 145, e809-e810.	1.6	0