Ljupco Todorovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199272/publications.pdf Version: 2024-02-01

LIUPCO TODOPOVSKI

#	Article	IF	CITATIONS
1	Explaining the performance of multilabel classification methods with data set properties. International Journal of Intelligent Systems, 2022, 37, 6080-6122.	5.7	4
2	A Review of Digital Era Governance Research in the First Two Decades: A Bibliometric Study. Future Internet, 2022, 14, 126.	3.8	16
3	Comprehensive comparative study of multi-label classification methods. Expert Systems With Applications, 2022, 203, 117215.	7.6	38
4	Probabilistic grammars for equation discovery. Knowledge-Based Systems, 2021, 224, 107077.	7.1	11
5	Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water (Switzerland), 2021, 13, 2268.	2.7	2
6	Extractive Text Summarization Based on Selectivity Ranking. , 2021, , .		1
7	Automated modelling of urban runoff based on domain knowledge and equation discovery. Journal of Hydrology, 2021, 603, 127077.	5.4	5
8	Combinatorial search for selecting the structure of models of dynamical systems with equation discovery. Engineering Applications of Artificial Intelligence, 2020, 89, 103423.	8.1	4
9	Equation Discovery for Nonlinear System Identification. IEEE Access, 2020, 8, 29930-29943.	4.2	11
10	Assessing the Agreement in the Bebras Tasks Categorisation. Lecture Notes in Computer Science, 2020, , 30-41.	1.3	1
11	Reconstructing dynamical networks via feature ranking. Chaos, 2019, 29, 093107.	2.5	14
12	The Influence of Feature Representation of Text on the Performance of Document Classification. Applied Sciences (Switzerland), 2019, 9, 743.	2.5	26
13	Towards reusable process-based models of dynamical systems: A case study in the domain of aquatic ecosystems. , 2019, , .		0
14	Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems. IEEE Access, 2019, 7, 181829-181841.	4.2	4
15	Extensive evaluation of the generalized relevance network approach to inferring gene regulatory networks. GigaScience, 2018, 7, .	6.4	7
16	Decoupling approximation robustly reconstructs directed dynamical networks. New Journal of Physics, 2018, 20, 113003.	2.9	6
17	Process-Based Modeling and Design of Dynamical Systems. Lecture Notes in Computer Science, 2017, , 378-382.	1.3	5
18	Process-based design of dynamical biological systems. Scientific Reports, 2016, 6, 34107.	3.3	8

LJUPCO TODOROVSKI

#	Article	IF	CITATIONS
19	Learning stochastic process-based models of dynamical systems from knowledge and data. BMC Systems Biology, 2016, 10, 30.	3.0	19
20	Learning Ensembles of Process-Based Models by Bagging of Random Library Samples. Lecture Notes in Computer Science, 2016, , 245-260.	1.3	1
21	Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models. PLoS ONE, 2016, 11, e0153507.	2.5	20
22	The effects of measurement error in case of scientific network analysis. Scientometrics, 2015, 104, 453-473.	3.0	11
23	Predicting long-term population dynamics with bagging and boosting of process-based models. Expert Systems With Applications, 2015, 42, 8484-8496.	7.6	24
24	Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology, 2015, 9, 31.	3.0	6
25	Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecological Modelling, 2015, 306, 305-317.	2.5	6
26	Inductive Process Modeling of Rab5-Rab7 Conversion in Endocytosis. Lecture Notes in Computer Science, 2013, , 265-280.	1.3	0
27	The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems. Ecological Modelling, 2012, 245, 136-165.	2.5	22
28	Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology, 2011, 5, 159.	3.0	37
29	Automated discovery of a model for dinoflagellate dynamics. Environmental Modelling and Software, 2011, 26, 658-668.	4.5	7
30	Participatory policy process design: lessons learned from three European regions. Journal of Balkan and Near Eastern Studies, 2011, 13, 117-139.	0.9	8
31	Modelling the outcrossing between genetically modified and conventional maize with equation discovery. Ecological Modelling, 2009, 220, 1063-1072.	2.5	11
32	Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data. Current Opinion in Biotechnology, 2008, 19, 360-368.	6.6	33
33	Inductive process modeling. Machine Learning, 2008, 71, 1-32.	5.4	66
34	Application of automated model discovery from data and expert knowledge to a real-world domain: Lake GlumsÃ, Ecological Modelling, 2008, 212, 92-98.	2.5	19
35	Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 2007, 108, 9-23.	11.0	171
36	Constructing explanatory process models from biological data and knowledge. Artificial Intelligence in Medicine, 2006, 37, 191-201.	6.5	28

LJUPCO TODOROVSKI

#	Article	IF	CITATIONS
37	Application of machine learning methods to palaeoecological data. Ecological Modelling, 2006, 191, 159-169.	2.5	0
38	Integrating knowledge-driven and data-driven approaches to modeling. Ecological Modelling, 2006, 194, 3-13.	2.5	56
39	Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecological Modelling, 2006, 194, 14-36.	2.5	33
40	Automated modelling of a food web in lake Bled using measured data and a library of domain knowledge. Ecological Modelling, 2006, 194, 37-48.	2.5	13
41	Combining Classifiers with Meta Decision Trees. Machine Learning, 2003, 50, 223-249.	5.4	159
42	Learning population dynamics models from data and domain knowledge. Ecological Modelling, 2003, 170, 129-140.	2.5	19
43	Using equation discovery to revise an Earth ecosystem model of the carbon net production. Ecological Modelling, 2003, 170, 141-154.	2.5	16
44	Users' information-seeking behavior on a medical library Website. Journal of the Medical Library Association: JMLA, 2002, 90, 210-7.	1.7	8
45	Presentation of dermatological images on the Internet. Computer Methods and Programs in Biomedicine, 2001, 65, 111-121.	4.7	6
46	Modelling and prediction of phytoplankton growth with equation discovery. Ecological Modelling, 1998, 113, 71-81.	2.5	31
47	Discovering dynamics: From inductive logic programming to machine discovery. Journal of Intelligent Information Systems, 1995, 4, 89-108.	3.9	62