Sven Hofling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7197667/publications.pdf

Version: 2024-02-01

675 papers 21,176 citations

14614 66 h-index 119 g-index

682 all docs

682 docs citations

times ranked

682

12915 citing authors

#	Article	IF	CITATIONS
1	On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Physical Review Letters, 2016, 116, 020401.	2.9	675
2	Introduction to the Special Issue on Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-3.	1.9	539
3	On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology, 2013, 8, 213-217.	15.6	444
4	Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature, 2012, 491, 421-425.	13.7	423
5	Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 2015, 526, 554-558.	13.7	422
6	An electrically pumped polariton laser. Nature, 2013, 497, 348-352.	13.7	420
7	Exciton-polariton topological insulator. Nature, 2018, 562, 552-556.	13.7	365
8	High-efficiency multiphoton boson sampling. Nature Photonics, 2017, 11, 361-365.	15.6	330
9	Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mn>0</mml:mn><mml:mn>14</mml:mn><td>sup}://mm</td><td>l:math>-Dime</td></mml:math>	sup }: //mm	l:math>-Dime
10	Ultrafast optical spin echo in a single quantum dot. Nature Photonics, 2010, 4, 367-370.	15.6	298
11	Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 2019, 13, 770-775.	15.6	290
12	AlAsâ^•GaAs micropillar cavities with quality factors exceeding 150.000. Applied Physics Letters, 2007, 90, 251109.	1.5	278
13	Two-dimensional semiconductors in the regime of strong light-matter coupling. Nature Communications, 2018, 9, 2695.	5.8	256
14	Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Applied Physics Letters, 2011, 99, .	1.5	251
15	Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Physics, 2008, 4, 700-705.	6.5	245
16	Interband cascade lasers. Journal Physics D: Applied Physics, 2015, 48, 123001.	1.3	222
17	On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. Physical Review Letters, 2019, 122, 113602.	2.9	219
18	Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nature Communications, 2016, 7, 13328.	5.8	214

#	Article	IF	Citations
19	Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Physics, 2011, 7, 872-878.	6.5	205
20	Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460, 245-249.	13.7	194
21	Single vortex–antivortex pair in an exciton-polariton condensate. Nature Physics, 2011, 7, 129-133.	6.5	192
22	Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-10.	1.9	188
23	Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Applied Physics Letters, 2010, 96, .	1.5	176
24	GaAs integrated quantum photonics: Towards compact and multiâ€functional quantum photonic integrated circuits. Laser and Photonics Reviews, 2016, 10, 870-894.	4.4	165
25	Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photonics, 2009, 3, 724-728.	15.6	163
26	An exciton-polariton laser based on biologically produced fluorescent protein. Science Advances, 2016, 2, e1600666.	4.7	159
27	Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 2017, 80, 016503.	8.1	157
28	Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. Physical Review Letters, 2016, 116, 213601.	2.9	150
29	Towards polariton blockade of confined exciton–polaritons. Nature Materials, 2019, 18, 219-222.	13.3	146
30	Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Optics Express, 2016, 24, 8539.	1.7	143
31	Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Materials, 2010, 9, 304-308.	13.3	138
32	Electrically driven high-Q quantum dot-micropillar cavities. Applied Physics Letters, 2008, 92, .	1.5	135
33	Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential. Nature Physics, 2011, 7, 681-686.	6.5	134
34	Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage. Nano Letters, 2014, 14, 6515-6519.	4.5	129
35	Time-Bin-Encoded Boson Sampling with a Single-Photon Device. Physical Review Letters, 2017, 118, 190501.	2.9	123
36	Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Nature Communications, 2016, 7, 11540.	5.8	120

#	Article	IF	CITATIONS
37	Signatures of a dissipative phase transition in photon correlation measurements. Nature Physics, 2018, 14, 365-369.	6.5	120
38	Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, 2009, 17, 819.	1.7	116
39	Photonic crystal cavity based gas sensor. Applied Physics Letters, 2008, 92, .	1.5	113
40	Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. Physical Review Letters, 2015, 114, 146805.	2.9	113
41	Power-law decay of the spatial correlation function in exciton-polariton condensates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6467-6472.	3.3	112
42	Gallium arsenide (GaAs) quantum photonic waveguide circuits. Optics Communications, 2014, 327, 49-55.	1.0	98
43	Exciton–polariton condensates with flat bands in a two-dimensional kagome lattice. New Journal of Physics, 2012, 14, 065002.	1.2	97
44	Toward Scalable Boson Sampling with Photon Loss. Physical Review Letters, 2018, 120, 230502.	2.9	97
45	Lithographic alignment to site-controlled quantum dots for device integration. Applied Physics Letters, 2008, 92, .	1.5	96
46	Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field. Physical Review Letters, 2010, 105, 256401.	2.9	92
47	Low threshold electrically pumped quantum dot-micropillar lasers. Applied Physics Letters, 2008, 93, .	1.5	90
48	Creation of Orbital Angular Momentum States with Chiral Polaritonic Lenses. Physical Review Letters, 2014, 113, 200404.	2.9	89
49	Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nature Nanotechnology, 2019, 14, 770-775.	15.6	87
50	Single photon emission from a site-controlled quantum dot-micropillar cavity system. Applied Physics Letters, 2009, 94, 111111.	1.5	86
51	Cascaded emission of single photons from the biexciton in monolayered WSe2. Nature Communications, 2016, 7, 13409.	5.8	86
52	Quantum-dot-induced phase shift in a pillar microcavity. Physical Review A, 2011, 84, .	1.0	80
53	Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 2012, 14, 083001.	1.2	80
54	Topological insulator vertical-cavity laser array. Science, 2021, 373, 1514-1517.	6.0	80

#	Article	IF	Citations
55	Emission from quantum-dot high- \hat{l}^2 microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light: Science and Applications, 2017, 6, e17030-e17030.	7.7	79
56	Spontaneous Emission Enhancement in Strain-Induced WSe ₂ Monolayer-Based Quantum Light Sources on Metallic Surfaces. ACS Photonics, 2018, 5, 1919-1926.	3.2	78
57	Single photon emission from positioned GaAs/AlGaAs photonic nanowires. Applied Physics Letters, 2010, 96, 211117.	1.5	77
58	Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity. Light: Science and Applications, 2014, 3, e135-e135.	7.7	75
59	Laser mode feeding by shaking quantum dots in a planar microcavity. Nature Photonics, 2012, 6, 30-34.	15.6	74
60	Interband cascade lasers with room temperature threshold current densities below $100\text{A/cm}2$. Applied Physics Letters, 2013 , 102 , .	1.5	72
61	Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology, 2009, 20, 434012.	1.3	71
62	Strain-Tunable Single Photon Sources in WSe ₂ Monolayers. Nano Letters, 2019, 19, 6931-6936.	4.5	71
63	Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Optics Express, 2008, 16, 15006.	1.7	70
64	Physics and applications of exciton–polariton lasers. Nature Materials, 2016, 15, 1049-1052.	13.3	70
65	Control of the Strong Light-Matter Interaction between an Elongated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>In</mml:mi><mml:mn>0.3</mml:mn></mml:msub><mml:msub><mml:mib=<mml:mi 103,="" 127401.<="" 2009,="" a="" and="" cavity="" dot="" external="" fields.="" letters,="" magnetic="" micropillar="" physical="" review="" td="" using=""><td>>Ca<td>l:mi><mml:< td=""></mml:<></td></td></mml:mib=<mml:mi></mml:msub></mml:math>	> C a <td>l:mi><mml:< td=""></mml:<></td>	l : mi> <mml:< td=""></mml:<>
66	Observing chaos for quantum-dot microlasers with external feedback. Nature Communications, 2011, 2, 366.	5.8	68
67	From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1804-1809.	3.3	68
68	Gain-Induced Trapping of Microcavity Exciton Polariton Condensates. Physical Review Letters, 2010, 104, 126403.	2.9	66
69	Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493Ânm. Applied Optics, 2012, 51, 6009.	0.9	66
70	Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Applied Physics Letters, 2013, 103, .	1.5	66
71	Bloch-Wave Engineering of Quantum Dot Micropillars for Cavity Quantum Electrodynamics Experiments. Physical Review Letters, 2012, 108, 057402.	2.9	63
72	Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Physical Review B, 2016, 93, .	1.1	63

#	Article	IF	Citations
73	Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica, 2017, 4, 802.	4.8	63
74	Narrow spectral linewidth from single site-controlled $\ln(Ga)$ As quantum dots with high uniformity. Applied Physics Letters, 2011, 98, .	1.5	61
75	Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica, 2019, 6, 890.	4.8	61
76	Indistinguishable Tunable Single Photons Emitted by Spin-Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 2013, 111, 237403.	2.9	60
77	An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics, $2016,1,.$	3.0	60
78	Polariton condensation in $\langle i \rangle S \langle i \rangle$ - and $\langle i \rangle P \langle i \rangle$ -flatbands in a two-dimensional Lieb lattice. Applied Physics Letters, 2017, 111, .	1.5	59
79	Mid-infrared semiconductor heterostructure lasers for gas sensing applications. Semiconductor Science and Technology, 2011, 26, 014032.	1.0	58
80	A polariton condensate in a photonic crystal potential landscape. New Journal of Physics, 2015, 17, 023001.	1.2	58
81	Coherently driving a single quantum two-level system with dichromatic laser pulses. Nature Physics, 2019, 15, 941-946.	6.5	58
82	Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Optics Express, 2012, 20, 27510.	1.7	57
83	Quantum Interference between Light Sources Separated by 150 Million Kilometers. Physical Review Letters, 2019, 123, 080401.	2.9	57
84	Characterization of two-threshold behavior of the emission from a GaAs microcavity. Physical Review B, 2012, 85, .	1.1	56
85	Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths. Physical Review B, 2014, 89, .	1.1	56
86	Room temperature organic exciton–polariton condensate in a lattice. Nature Communications, 2020, 11, 2863.	5.8	56
87	Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nature Materials, 2021, 20, 1233-1239.	13.3	56
88	Exciton–polariton condensates near the Dirac point in a triangular lattice. New Journal of Physics, 2013, 15, 035032.	1.2	55
89	Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 2019, 6, 563.	4.8	55
90	Continuous wave single mode operation of GalnAsSbâ^•GaSb quantum well lasers emitting beyond 3μm. Applied Physics Letters, 2008, 92, 183508.	1.5	54

#	Article	IF	CITATIONS
91	Onâ€Chip Quantum Optics with Quantum Dot Microcavities. Advanced Materials, 2013, 25, 707-710.	11.1	54
92	Circularly polarized light emission from chiral spatially-structured planar semiconductor microcavities. Physical Review B, 2014, 89, .	1.1	54
93	Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Physical Review B, 2014, 90, .	1.1	53
94	Pulsed Nuclear Pumping and Spin Diffusion in a Single Charged Quantum Dot. Physical Review Letters, 2010, 105, 107401.	2.9	51
95	Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition. Physical Review A, 2013, 87, .	1.0	51
96	Fourier Transformed Photoreflectance and Photoluminescence of Mid Infrared GaSb-Based Type II Quantum Wells. Applied Physics Express, 2009, 2, 126505.	1.1	50
97	Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 2012, 100, 061122.	1.5	50
98	Monolayered MoSe ₂ : a candidate for room temperature polaritonics. 2D Materials, 2017, 4, 015006.	2.0	50
99	Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers. Applied Physics Letters, 2012, 101, .	1.5	49
100	Microcavity controlled coupling of excitonic qubits. Nature Communications, 2013, 4, 1747.	5.8	49
101	Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nature Communications, 2018, 9, 3286.	5.8	49
102	Realization of all-optical vortex switching in exciton-polariton condensates. Nature Communications, 2020, 11, 897.	5.8	49
103	Temperature-Dependent Mollow Triplet Spectra from a Single Quantum Dot: Rabi Frequency Renormalization and Sideband Linewidth Insensitivity. Physical Review Letters, 2014, 113, 097401.	2.9	48
104	All-optical flow control of a polariton condensate using nonresonant excitation. Physical Review B, 2015, 91, .	1.1	48
105	Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry. Physical Review Letters, 2017, 118, 257402.	2.9	48
106	Influence of doping density on electron dynamics in GaAsâ^AlGaAs quantum cascade lasers. Journal of Applied Physics, 2006, 99, 103106.	1.1	47
107	Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode. Applied Physics Letters, 2010, 96, .	1.5	47
108	Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Applied Physics Letters, 2012, 100, .	1.5	47

#	Article	IF	Citations
109	Dynamically Controlled Resonance Fluorescence Spectra from a Doubly Dressed Single InGaAs Quantum Dot. Physical Review Letters, 2015, 114, 097402.	2.9	47
110	Coherent Polariton Laser. Physical Review X, 2016, 6, .	2.8	47
111	Bright single photon source based on self-aligned quantum dot–cavity systems. Optics Express, 2014, 22, 8136.	1.7	46
112	Quantum dot micropillar cavities with quality factors exceeding 250,000. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	46
113	Logical Stochastic Resonance with a Coulomb-Coupled Quantum-Dot Rectifier. Physical Review Applied, 2015, 4, .	1.5	45
114	Mode-switching induced super-thermal bunching in quantum-dot microlasers. New Journal of Physics, 2016, 18, 063011.	1.2	45
115	Collective state transitions of exciton-polaritons loaded into a periodic potential. Physical Review B, 2016, 93, .	1.1	45
116	Charged quantum dot micropillar system for deterministic light-matter interactions. Physical Review B, 2016, 93, .	1.1	45
117	Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Optics Letters, 2008, 33, 1759.	1.7	44
118	Monomode Interband Cascade Lasers at 5.2 \$mu{m m}\$ for Nitric Oxide Sensing. IEEE Photonics Technology Letters, 2014, 26, 480-482.	1.3	44
119	Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Applied Physics Letters, 2014, 105, 021909.	1.5	43
120	Extending Quantum Links: Modules for Fiber―and Memoryâ€Based Quantum Repeaters. Advanced Quantum Technologies, 2020, 3, 1900141.	1.8	43
121	Near-Unity Indistinguishability Single Photon Source for Large-Scale Integrated Quantum Optics. Physical Review Letters, 2019, 122, 173602.	2.9	42
122	Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons. ACS Photonics, 2020, 7, 384-392.	3.2	42
123	Effect of Coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities. Physical Review B, 2011, 84, .	1.1	41
124	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Applied Physics Letters, 2012, 100, .	1.5	41
125	Polariton multistability and fast linear-to-circular polarization conversion in planar microcavities with lowered symmetry. Applied Physics Letters, 2013, 102, 011104.	1.5	41
126	Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment. New Journal of Physics, 2014, 16, 043003.	1.2	41

#	Article	IF	Citations
127	Electro optical tuning of Tamm-plasmon exciton-polaritons. Applied Physics Letters, 2014, 105, 181107.	1.5	40
128	Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Physical Review B, $2011,84,.$	1.1	39
129	Single photon emission from InGaN/GaN quantum dots up to 50 K. Applied Physics Letters, 2012, 100, .	1.5	39
130	Spatial Coherence Properties of One Dimensional Exciton-Polariton Condensates. Physical Review Letters, 2014, 113, 203902.	2.9	39
131	Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers. Physical Review B, 2010, 81, .	1.1	38
132	Higher order coherence of exciton-polariton condensates. Physical Review B, 2010, 81, .	1.1	38
133	Carrier trapping and luminescence polarization in quantum dashes. Physical Review B, 2012, 85, .	1.1	38
134	Anomalies of a Nonequilibrium Spinor Polariton Condensate in a Magnetic Field. Physical Review Letters, 2014, 112, 093902.	2.9	38
135	Single-photon emission of InAs/InP quantum dashes at 1.55 <i>μ</i> m and temperatures up to 80 K. A Physics Letters, 2016, 108, .	ppljed	38
136	Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe2 monolayer. Nature Communications, 2017, 8, 259.	5.8	38
137	Numerical and Experimental Study of the \$Q\$ Factor of High-\$Q\$ Micropillar Cavities. IEEE Journal of Quantum Electronics, 2010, 46, 1470-1483.	1.0	37
138	Single mode interband cascade lasers based on lateral metal gratings. Applied Physics Letters, 2014, 105, .	1.5	37
139	Lasing from active optomechanical resonators. Nature Communications, 2014, 5, 4038.	5.8	37
140	InAs-based interband-cascade-lasers emitting around $7\hat{a}\in \infty < i>\hat{l}^{1}/4 < /i> m with threshold current densities below 1\hat{a}\in \infty kA/cm2 at room temperature. Applied Physics Letters, 2015, 106, .$	1.5	37
141	Electro-Photo-Sensitive Memristor for Neuromorphic and Arithmetic Computing. Physical Review Applied, 2016, 5, .	1.5	37
142	Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. Physical Review B, 2015, 92, .	1.1	36
143	Sensitivity of resonant tunneling diode photodetectors. Nanotechnology, 2016, 27, 355202.	1.3	36
144	Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states. Physical Review B, 2016, 93, .	1.1	36

#	Article	IF	CITATIONS
145	Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion–polaritons with a MoSe ₂ monolayer. 2D Materials, 2017, 4, 025096.	2.0	36
146	Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe ₂ Monolayer Quantum Dot in a Circular Bragg Grating Cavity. Nano Letters, 2021, 21, 4715-4720.	4.5	36
147	Tapered quantum cascade lasers. Applied Physics Letters, 2007, 91, 181122.	1.5	35
148	Shortened injector interband cascade lasers for 3.3- to 3.6- \hat{l} 4m emission. Optical Engineering, 2010, 49, 111117.	0.5	35
149	Light sensitive memristor with bi-directional and wavelength-dependent conductance control. Applied Physics Letters, 2016, 109, .	1.5	35
150	Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin. Physical Review Letters, 2017, 119, 060501.	2.9	35
151	Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature. Physical Review B, 2017, 96, .	1.1	35
152	The interplay between excitons and trions in a monolayer of MoSe2. Applied Physics Letters, 2018, 112, .	1.5	35
153	Purcell-Enhanced and Indistinguishable Single-Photon Generation from Quantum Dots Coupled to On-Chip Integrated Ring Resonators. Nano Letters, 2020, 20, 6357-6363.	4.5	35
154	Whispering gallery mode lasing in electrically driven quantum dot micropillars. Applied Physics Letters, 2010, 97, .	1.5	34
155	Quantum efficiency and oscillator strength of site-controlled InAs quantum dots. Applied Physics Letters, 2010, 96, .	1.5	34
156	Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica, 2016, 3, 377.	4.8	34
157	Multi-wave coherent control of a solid-state single emitter. Nature Photonics, 2016, 10, 155-158.	15.6	34
158	Experimental and theoretical analysis of Landauer erasure in nano-magnetic switches of different sizes. Nano Energy, 2016, 19, 108-116.	8.2	34
159	Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode. Physical Review B, 2010, 82, .	1.1	33
160	Exciton and biexciton dynamics in single self-assembled InAs/InGaAlAs/InP quantum dash emitting near 1.55 <i>μ</i> m. Applied Physics Letters, 2013, 103, .	1.5	33
161	Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting. Applied Physics Letters, 2014, 105 , .	1.5	33
162	Single-mode interband cascade lasers emitting below 2.8 <i>μ</i> m. Applied Physics Letters, 2015, 106, .	1.5	33

#	Article	IF	CITATIONS
163	Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity. Physical Review Letters, 2017, 119, 027401.	2.9	33
164	Deterministic coupling of quantum emitters in WSe ₂ monolayers to plasmonic nanocavities. Optics Express, 2018, 26, 25944.	1.7	33
165	Emission wavelength tuning of interband cascade lasers in the 3–4â€,Î⅓m spectral range. Applied Physics Letters, 2009, 95, .	1.5	32
166	Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths. Optics Express, 2012, 20, 21758.	1.7	32
167	GaAs/AlGaAs resonant tunneling diodes with a GalnNAs absorption layer for telecommunication light sensing. Applied Physics Letters, 2012, 100, 172113.	1.5	32
168	Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths. Applied Physics Letters, 2014, 104, 101109.	1.5	32
169	Nonlinear photoluminescence spectra from a quantum-dot–cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED. Physical Review B, 2010, 81, .	1.1	31
170	Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature Communications, 2013, 4, 2228.	5.8	31
171	Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nature Communications, 2015, 6, 8955.	5.8	31
172	Electrically Tunable Single-Photon Source Triggered by a Monolithically Integrated Quantum Dot Microlaser. ACS Photonics, 2017, 4, 790-794.	3.2	31
173	Platform for Electrically Pumped Polariton Simulators and Topological Lasers. Physical Review Letters, 2018, 121, 257402.	2.9	31
174	Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor. Physical Review Applied, 2018, 9, .	1.5	31
175	Widely tunable quantum cascade lasers with coupled cavities for gas detection. Applied Physics Letters, 2010, 97, .	1.5	30
176	Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots. Applied Physics Letters, 2012, 101, .	1.5	30
177	Stochastic formation of polariton condensates in two degenerate orbital states. Physical Review B, 2013, 87, .	1.1	30
178	Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter. Physical Review B, 2015, 91, .	1.1	30
179	Optical bistability in electrically driven polariton condensates. Physical Review B, 2015, 91, .	1.1	30
	Fycitons in Rilayer amplymath ymlosymol-"http://www.w3.org/1998/Math/MathMI"		

Excitons in Bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn></r
Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response. Physical Review Letters,
2021, 126, 037401.

#	Article	IF	CITATIONS
181	The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system. Optics Express, 2009, 17, 12821.	1.7	29
182	Exciton spin state mediated photon-photon coupling in a strongly coupled quantum dot microcavity system. Physical Review B, $2010,82,.$	1.1	29
183	Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode. Applied Physics Letters, 2015, 106, .	1.5	29
184	Talbot Effect for Exciton Polaritons. Physical Review Letters, 2016, 117, 097403.	2.9	29
185	Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials. Optical Materials Express, 2019, 9, 598.	1.6	29
186	Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity. Applied Physics Letters, 2012, 101, 091106.	1.5	28
187	Half-skyrmion spin textures in polariton microcavities. Physical Review B, 2016, 94, .	1.1	28
188	Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots. Physical Review B, 2016, 93, .	1.1	28
189	Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures. Physical Review B, 2017, 96, .	1.1	28
190	Controlled Ordering of Topological Charges in an Exciton-Polariton Chain. Physical Review Letters, 2018, 121, 225302.	2.9	28
191	Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate. Physical Review Letters, 2018, 121, 047401.	2.9	28
192	Coherent Topological Polariton Laser. ACS Photonics, 2021, 8, 1377-1384.	3.2	28
193	Room-Temperature Topological Polariton Laser in an Organic Lattice. Nano Letters, 2021, 21, 6398-6405.	4.5	28
194	Picosecond pulses from a mid-infrared interband cascade laser. Optica, 2019, 6, 1334.	4.8	28
195	Large quantum dots with small oscillator strength. Physical Review B, 2010, 82, .	1.1	27
196	All-optical control of quantized momenta on a polariton staircase. Physical Review B, 2012, 85, .	1.1	27
197	Spin multistability of cavity polaritons in a magnetic field. Physical Review B, 2013, 87, .	1.1	27
198	High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientific Reports, 2016, 6, 25655.	1.6	27

#	Article	IF	Citations
199	Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap. Nature Communications, 2021, 12, 6406.	5.8	27
200	Experimental evidence on quantum well–quantum dash energy transfer in tunnel injection structures for 1.55μm emission. Applied Physics Letters, 2007, 90, 081915.	1.5	26
201	Exciton and biexciton emission from a single InAs/InP quantum dash. Journal of Applied Physics, 2009, 105, 086104.	1.1	26
202	Coherence Expansion and Polariton Condensate Formation in a Semiconductor Microcavity. Physical Review Letters, 2013, 110, 137402.	2.9	26
203	Ghost Branch Photoluminescence From a Polariton Fluid Under Nonresonant Excitation. Physical Review Letters, 2015, 115, 186401.	2.9	26
204	Photocurrent-voltage relation of resonant tunneling diode photodetectors. Applied Physics Letters, 2015, 107, .	1.5	26
205	Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica, 2017, 4, 669.	4.8	26
206	Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source. Light: Science and Applications, 2018, 7, 41.	7.7	26
207	99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Physical Review B, 2019, 100, .	1.1	26
208	Strain-Tunable Single-Photon Source Based on a Circular Bragg Grating Cavity with Embedded Quantum Dots. ACS Photonics, 2020, 7, 3474-3480.	3.2	26
209	Exciton-Exciton Interaction beyond the Hydrogenic Picture in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>2.9 nml:mn>2</td><td> <</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	2.9 nml:mn>2	<
210	Low threshold, high gain AlGaInAs quantum dot lasers. Applied Physics Letters, 2007, 90, 221113.	1.5	25
211	Structural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy. Journal of Applied Physics, 2011, 109, 014309.	1.1	25
212	Mode selection in electrically driven quantum dot microring cavities. Optics Express, 2013, 21, 15951.	1.7	25
213	Nonlinear route to intrinsic Josephson oscillations in spinor cavity-polariton condensates. Physical Review B, 2014, 90, .	1.1	25
214	Efficient single photon source based on \hat{l} 4-fibre-coupled tunable microcavity. Scientific Reports, 2015, 5, 14309.	1.6	25
215	Evolution of Temporal Coherence in Confined Exciton-Polariton Condensates. Physical Review Letters, 2018, 120, 017401.	2.9	25
216	Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels. Nature Communications, 2019, 10, 1539.	5.8	25

#	Article	IF	Citations
217	Monolithically Integrated Logic nor Gate Based on GaAs/AlGaAs Three-Terminal Junctions. IEEE Electron Device Letters, 2007, 28, 859-861.	2.2	24
218	Oscillatory variations in the Q factors of high quality micropillar cavities. Applied Physics Letters, 2009, 94, 061108.	1.5	24
219	Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector. Optics Express, 2012, 20, 3890.	1.7	24
220	Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Physical Review B, 2012, 86, .	1.1	24
221	Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications. Applied Physics Letters, 2018, 112, 161107.	1.5	24
222	Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions. Journal of Crystal Growth, 2005, 278, 775-779.	0.7	23
223	Columnar quantum dashes for an active region in polarization independent semiconductor optical amplifiers at $1.55 \hat{l} \frac{1}{4}$ m. Applied Physics Letters, 2008, 93, .	1.5	23
224	Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications. Applied Physics Letters, 2009, 94, .	1.5	23
225	Electromechanical tuning of vertically-coupled photonic crystal nanobeams. Optics Express, 2012, 20, 19255.	1.7	23
226	Interband cascade lasers with AlGaAsSb bulk cladding layers. Optical Materials Express, 2013, 3, 1624.	1.6	23
227	Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures. ACS Nano, 2015, 9, 6271-6277.	7. 3	23
228	Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity. Physical Review B, 2017, 95, .	1.1	23
229	Picosecond Control of Quantum Dot Laser Emission by Coherent Phonons. Physical Review Letters, 2017, 118, 133901.	2.9	23
230	Resolving the temporal evolution of line broadening in single quantum emitters. Optics Express, 2019, 27, 35290.	1.7	23
231	Detection of charge states in nanowire quantum dots using a quantum point contact. Applied Physics Letters, 2007, 90, 172112.	1.5	22
232	Tailoring of morphology and emission wavelength of AlGalnAs quantum dots. Nanotechnology, 2008, 19, 045601.	1.3	22
233	Room temperature memory operation of a single InAs quantum dot layer in a GaAsâ [•] AlGaAs heterostructure. Applied Physics Letters, 2008, 93, 063502.	1.5	22
234	Phonon-assisted radiative recombination of excitons confined in strongly anisotropic nanostructures. Physical Review B, 2014, 90, .	1.1	22

#	Article	lF	CITATIONS
235	Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot. Optica, 2015, 2, 1072.	4.8	22
236	Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system. Optics Express, 2015, 23, 32977.	1.7	22
237	Coupling polariton quantum boxes in sub-wavelength grating microcavities. Applied Physics Letters, 2015, 106, .	1.5	22
238	Influence of optical material properties on strong coupling in organic semiconductor based microcavities. Applied Physics Letters, 2017, 110, .	1.5	22
239	Polarization-dependent strong coupling in elliptical high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> micropillar cavities. Physical Review B, 2010, 82, .	1.1	21
240	Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy. Nanotechnology, 2012, 23, 015605.	1.3	21
241	Integrated autocorrelator based on superconducting nanowires. Optics Express, 2013, 21, 11162.	1.7	21
242	Spin and density patterns of polariton condensates resonantly excited in strained planar microcavities with a nonuniform potential landscape. Physical Review B, 2013, 88, .	1.1	21
243	Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots. Physical Review B, 2013, 87, .	1.1	21
244	Influence of interactions with noncondensed particles on the coherence of a one-dimensional polariton condensate. Physical Review B, 2014, 89, .	1.1	21
245	Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 î¼m. Applied Physics Letters, 2015, 106, 053114.	1.5	21
246	Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins. Advanced Optical Materials, 2017, 5, 1600659.	3.6	21
247	High beta lasing in micropillar cavities with adiabatic layer design. Applied Physics Letters, 2013, 102, 052114.	1.5	20
248	Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Optics Express, 2014, 22, 31146.	1.7	20
249	Simple Electrical Modulation Scheme for Laser Feedback Imaging. IEEE Sensors Journal, 2016, 16, 1937-1942.	2.4	20
250	Strong light-matter coupling in the presence of lasing. Physical Review A, 2017, 96, .	1.0	20
251	Strain-Tunable Single-Photon Source Based on a Quantum Dot–Micropillar System. ACS Photonics, 2019, 6, 2025-2031.	3 . 2	20
252	Heralded Nondestructive Quantum Entangling Gate with Single-Photon Sources. Physical Review Letters, 2021, 126, 140501.	2.9	20

#	Article	IF	CITATIONS
253	Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nature Communications, 2021, 12, 4933.	5.8	20
254	Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots. Optics Express, 2022, 30, 15913.	1.7	20
255	1.3 $\hat{l}\frac{1}{4}$ m Quantum Dot Laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation. Optics Express, 2008, 16, 5596.	1.7	19
256	In(Ga)As/GaAs siteâ€controlled quantum dots with tailored morphology and high optical quality. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2379-2386.	0.8	19
257	Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide. Journal of Optics (United Kingdom), 2015, 17, 125201.	1.0	19
258	Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe_2. Optics Express, 2016, 24, 8066.	1.7	19
259	Tunable Light–Matter Hybridization in Open Organic Microcavities. ACS Photonics, 2018, 5, 90-94.	3.2	19
260	Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source. Physical Review B, 2018, 97, .	1.1	19
261	Nonresonant spin selection methods and polarization control in exciton-polariton condensates. Physical Review B, 2019, 99, .	1.1	19
262	Rabi oscillations of a quantum dot exciton coupled to acoustic phonons: coherence and population readout. Optica, 2018, 5, 1442.	4.8	19
263	Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 2022, 13, 748.	5.8	19
264	Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals. Applied Physics Letters, 2007, 91, .	1.5	18
265	The impact of p-doping on the static and dynamic properties of 1.5â€,μm quantum dash lasers on InP. Applied Physics Letters, 2008, 92, 011120.	1.5	18
266	Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots. Applied Physics Letters, 2012, 100, .	1.5	18
267	Type II quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared. Optical Materials, 2012, 34, 1107-1111.	1.7	18
268	Temperature Dependence of Highly Excited Exciton Polaritons in Semiconductor Microcavities. Journal of the Physical Society of Japan, 2013, 82, 084709.	0.7	18
269	Photon-Statistics Excitation Spectroscopy of a Quantum-Dot Micropillar Laser. Physical Review Letters, 2015, 115, 027401.	2.9	18
270	Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing. Applied Physics Letters, 2016, 108, .	1.5	18

#	Article	IF	CITATIONS
271	Injection Locking of Quantum-Dot Microlasers Operating in the Few-Photon Regime. Physical Review Applied, 2016, 6, .	1.5	18
272	Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes. Physical Review B, 2016, 94, .	1.1	18
273	Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation. Physical Review X, 2017, 7, .	2.8	18
274	Highly excited exciton-polariton condensates. Physical Review B, 2017, 95, .	1.1	18
275	Monolithic High-Contrast Grating Based Polariton Laser. ACS Photonics, 2019, 6, 18-22.	3.2	18
276	Micro-mechanical assembly and characterization of high-quality Fabry–Pérot microcavities for the integration of two-dimensional materials. Applied Physics Letters, 2021, 118, .	1.5	18
277	Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities. Applied Physics Letters, 2006, 89, 241126.	1.5	17
278	Electrically Driven Quantum Dot Micropillar Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1670-1680.	1.9	17
279	Site-controlled InP/GaInP quantum dots emitting single photons in the red spectral range. Applied Physics Letters, 2012, 100, .	1.5	17
280	Height-driven linear polarization of the surface emission from quantum dashes. Semiconductor Science and Technology, 2012, 27, 105022.	1.0	17
281	Roomâ€temperature operation of InAsâ€based interbandâ€cascadeâ€lasers beyond 6 µm. Electronics Letters, 2013, 49, 286-287.	0.5	17
282	Demonstration of the self-mixing effect in interband cascade lasers. Applied Physics Letters, 2013, 103, .	1.5	17
283	Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Physical Review B, 2014, 90,	1.1	17
284	A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 681-689.	1.9	17
285	Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. Optics Express, 2018, 26, 22457.	1.7	17
286	Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature. Applied Physics Letters, 2020, 116, .	1.5	17
287	GaAsâ^•AlGaAs quantum cascade micro lasers based on monolithic semiconductor-air Bragg mirrors. Electronics Letters, 2004, 40, 120.	0.5	16
288	Device performance and wavelength tuning behavior of ultra-short quantum-cascade microlasers with deeply etched Bragg-mirrors. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1048-1054.	1.9	16

#	Article	IF	CITATIONS
289	Dependence of saturation effects on electron confinement and injector doping in GaAsâ [•] Al0.45Ga0.55As quantum-cascade lasers. Applied Physics Letters, 2006, 88, 251109.	1.5	16
290	Electroluminescence from spatially confined exciton polaritons in a textured microcavity. Applied Physics Letters, 2013 , 102 , .	1.5	16
291	Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GalnAsSb layers. Journal of Applied Physics, 2013, 114, .	1.1	16
292	Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots. Physical Review B, 2014, 90, .	1.1	16
293	Blowup dynamics of coherently driven polariton condensates: Experiment. Physical Review B, 2015, 92,	1.1	16
294	Memristive operation mode of a site-controlled quantum dot floating gate transistor. Applied Physics Letters, 2015, 106, .	1.5	16
295	Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells. Applied Physics Letters, 2016, 109, .	1.5	16
296	Experimental realization of a polariton beam amplifier. Physical Review B, 2016, 93, .	1.1	16
297	Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot–microcavity system. Physical Review B, 2017, 95, .	1.1	16
298	Coherent coupling of individual quantum dots measured with phase-referenced two-dimensional spectroscopy: Photon echo versus double quantum coherence. Physical Review B, 2017, 96, .	1.1	16
299	On-chip optoelectronic feedback in a micropillar laser-detector assembly. Optica, 2017, 4, 303.	4.8	16
300	Exciton-polaritons in flatland: Controlling flatband properties in a Lieb lattice. Physical Review B, 2020, 102, .	1.1	16
301	Multiphoton Graph States from a Solid-State Single-Photon Source. ACS Photonics, 2020, 7, 1603-1610.	3.2	16
302	Interband Cascade Laser Arrays for Simultaneous and Selective Analysis of C1–C5 Hydrocarbons in Petrochemical Industry. Applied Spectroscopy, 2021, 75, 336-342.	1.2	16
303	Acoustic phonon sideband dynamics during polaron formation in a single quantum dot. Optics Letters, 2020, 45, 919.	1.7	16
304	Mid infrared DFB interband cascade lasers. , 2017, , .		16
305	Bose-einstein condensation of exciton polaritons in high-Q planar microcavities with GaAs quantum wells. JETP Letters, 2010, 92, 595-599.	0.4	15
306	Light-induced stochastic resonance in a nanoscale resonant-tunneling diode. Applied Physics Letters, 2011, 98, .	1.5	15

#	Article	IF	CITATIONS
307	Nonlinear emission characteristics of quantum dot–micropillar lasers in the presence of polarized optical feedback. New Journal of Physics, 2013, 15, 025030.	1.2	15
308	Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities. Applied Physics Letters, 2014, 105, .	1.5	15
309	Loss of coherence in cavity-polariton condensates: Effect of disorder versus exciton reservoir. Physical Review B, 2016, 94, .	1.1	15
310	Polarization-dependent light-matter coupling and highly indistinguishable resonant fluorescence photons from quantum dot-micropillar cavities with elliptical cross section. Physical Review B, 2019, 100, .	1.1	15
311	Formation dynamics of exciton-polariton vortices created by nonresonant annular pumping. Physical Review B, 2020, 101, .	1.1	15
312	Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates. Physical Review B, 2020, 101, .	1.1	15
313	Proof-of-principle demonstration of compiled Shor's algorithm using a quantum dot single-photon source. Optics Express, 2020, 28, 18917.	1.7	15
314	Frequency-Dependent Linewidth Enhancement Factor of Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2008, 20, 1736-1738.	1.3	14
315	InAs/GalnAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm. Nanotechnology, 2009, 20, 505601.	1.3	14
316	Magnetic field control of polarized polariton condensates in rectangular microcavity pillars. Physical Review B, 2012, 85, .	1.1	14
317	(In,Ga)As/GaP electrical injection quantum dot laser. Applied Physics Letters, 2014, 104, 011113.	1.5	14
318	Invited Article: Time-bin entangled photon pairs from Bragg-reflection waveguides. APL Photonics, 2018, 3, 080804.	3.0	14
319	Efficient Quantum Photonic Phase Shift in a Low Q-Factor Regime. ACS Photonics, 2019, 6, 429-435.	3.2	14
320	Direct Generation of Radially Polarized Vector Vortex Beam with an Exciton-Polariton Laser. Physical Review Applied, 2020, 14, .	1.5	14
321	High efficiency mid-infrared interband cascade LEDs grown on low absorbing substrates emitting >5ÂmW of output power. Optical Engineering, 2019, 58, 1.	0.5	14
322	High-Performance Short-Wavelength (\$sim\$760 nm) AlGalnAs Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2007, 19, 1380-1382.	1.3	13
323	Room-temperature singlemode continuous-wave operation of distributed feedback GalnNAs laser diodes at 1.5â€[micro sign]m. Electronics Letters, 2008, 44, 737.	0.5	13
324	Orientation dependent emission properties of columnar quantum dash laser structures. Applied Physics Letters, 2009, 94, 241113.	1.5	13

#	Article	IF	CITATIONS
325	Strong coupling in a quantum dot micropillar system under electrical current injection. Applied Physics Letters, 2010, 96, 221102.	1.5	13
326	Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices. Journal of Crystal Growth, 2011, 323, 194-197.	0.7	13
327	Temperature dependence of pulsed polariton lasing in a GaAs microcavity. New Journal of Physics, 2012, 14, 083014.	1.2	13
328	Mode-resolved Fabry-Perot experiment in low-loss Bragg-reflection waveguides. Optics Express, 2015, 23, 33608.	1.7	13
329	Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities. Physical Review B, 2015, 91, .	1.1	13
330	Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers. Physical Review A, 2015, 91, .	1.0	13
331	Polariton Laser in the Bardeen-Cooper-Schrieffer Regime. Physical Review X, 2021, 11, .	2.8	13
332	Tracking Dark Excitons with Exciton Polaritons in Semiconductor Microcavities. Physical Review Letters, 2019, 122, 047403.	2.9	13
333	Temporally versatile polarization entanglement from Bragg reflection waveguides. Optics Letters, 2017, 42, 2102.	1.7	13
334	Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity. Physical Review Letters, 2022, 128, 087401.	2.9	13
335	High Extraction Efficiency Source of Photon Pairs Based on a Quantum Dot Embedded inÂa Broadband Micropillar Cavity. Physical Review Letters, 2022, 129, .	2.9	13
336	Gain Studies on Quantum-Dot Lasers With Temperature-Stable Emission Wavelength. IEEE Journal of Quantum Electronics, 2008, 44, 175-181.	1.0	12
337	Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices. Nanotechnology, 2010, 21, 455603.	1.3	12
338	Increasing the optical transition oscillator strength in GaSb-based type II quantum wells. Applied Physics Letters, 2012, 100, .	1.5	12
339	Electrically Driven Polariton Lasing. Optics and Photonics News, 2013, 24, 30.	0.4	12
340	p- to n-type conductivity transition in 1.0 eV GalnNAs solar cells controlled by the V/III ratio. Applied Physics Letters, 2015, 106, .	1.5	12
341	Room temperature operation of GaSb-based resonant tunneling diodes by prewell injection. Applied Physics Letters, 2017, 110, .	1.5	12
342	Substrate-emitting ring interband cascade lasers. Applied Physics Letters, 2017, 111, .	1.5	12

#	Article	IF	CITATIONS
343	Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes. Journal of Applied Physics, 2017, 122, 154502.	1.1	12
344	Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths. Physical Review B, 2018, 97, .	1.1	12
345	Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons. Physical Review B, 2019, 100, .	1.1	12
346	Propagative Oscillations in Codirectional Polariton Waveguide Couplers. Physical Review Letters, 2021, 126, 075302.	2.9	12
347	Circularly Polarized Laser Emission from an Electrically Pumped Chiral Microcavity. Physical Review Applied, 2022, 17, .	1.5	12
348	Mitigating Valence Intersubband Absorption in Interband Cascade Lasers. Laser and Photonics Reviews, 2022, 16, .	4.4	12
349	The structural and optical characterization of high areal density Ga _{<i>x</i>} In _{1â^'<i>x</i>} P quantum dots on GaP. Nanotechnology, 2009, 20, 434016.	1.3	11
350	GalnNAs-Based High-Power and Tapered Laser Diodes for Pumping Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 968-972.	1.9	11
351	Coherence dynamics and quantum-to-classical crossover in an exciton–cavity system in the quantum strong coupling regime. New Journal of Physics, 2013, 15, 045013.	1.2	11
352	Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars. Applied Physics Letters, 2015, 106, .	1.5	11
353	Monolithic single mode interband cascade lasers with wide wavelength tunability. Applied Physics Letters, 2016, 109, .	1.5	11
354	Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device. Physical Review Letters, 2020, 125, 153601.	2.9	11
355	Bimodal behavior of microlasers investigated with a two-channel photon-number-resolving transition-edge sensor system. Physical Review Research, 2021, 3, .	1.3	11
356	Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers. Optics Express, 2019, 27, 28816.	1.7	11
357	Highly efficient and compact photonic wire splitters on GaAs. Applied Physics Letters, 2007, 91, 221102.	1.5	10
358	Short-Wavelength (760–920 nm) AlGalnAs Quantum Dot Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 792-798.	1.9	10
359	Modulation Bandwidth and Linewidth Enhancement Factor of High-Speed 1.55-\$mu\$m Quantum-Dash Lasers. IEEE Photonics Technology Letters, 2009, 21, 528-530.	1.3	10
360	Exciton kinetics and few particle effects in self-assembled GaAs-based quantum dashes. Journal of Applied Physics, 2010, 107, 096106.	1.1	10

#	Article	IF	Citations
361	Extrapolation of the intensity autocorrelation function of a quantum-dot micropillar laser into the thermal emission regime. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1404.	0.9	10
362	Room temperature polariton light emitting diode with integrated tunnel junction. Optics Express, 2013, 21, 31098.	1.7	10
363	Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling. Journal of Applied Physics, 2013, 113, 233508.	1.1	10
364	Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots: Towards temperature-stable strong coupling in the solid state with quantum dot-micropillars. Physical Review B, 2015, 92, .	1,1	10
365	Bulk AllnAs on InP(111) as a novel material system for pure single photon emission. Optics Express, 2016, 24, 23198.	1.7	10
366	Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 $\hat{A}\mu m$ emission. AIP Advances, 2017, 7, 015117.	0.6	10
367	Prototype of a bistable polariton field-effect transistor switch. Scientific Reports, 2017, 7, 5114.	1.6	10
368	Circular and linear photogalvanic effects in type-II GaSb/InAs quantum well structures in the inverted regime. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 193-198.	1.3	10
369	Confinement regime in self-assembled InAs/InAlGaAs/InP quantum dashes determined from exciton and biexciton recombination kinetics. Applied Physics Letters, 2017, 111, 253106.	1.5	10
370	Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications. Quantum Science and Technology, 2018, 3, 024002.	2.6	10
371	Sharpening emitter localization in front of a tuned mirror. Light: Science and Applications, 2018, 7, 99.	7.7	10
372	Accurate photon echo timing by optical freezing of exciton dephasing and rephasing in quantum dots. Communications Physics, 2020, 3, .	2.0	10
373	Manipulation of room-temperature valley-coherent exciton-polaritons in atomically thin crystals by real and artificial magnetic fields. 2D Materials, 2020, 7, 035025.	2.0	10
374	Dynamic properties of 1.5â€[micro sign]m quantum dash lasers on (100) InP. Electronics Letters, 2007, 43, 1093.	0.5	9
375	Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9â€[micro sign]m range. Electronics Letters, 2008, 44, 527.	0.5	9
376	Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter. Applied Physics Letters, 2008, 93, 211106.	1.5	9
377	Power gain up to gigahertz frequencies in three-terminal nanojunctions at room temperature. Applied Physics Letters, 2009, 95, 103502.	1.5	9
378	Resonantly probing micropillar cavity modes by photocurrent spectroscopy. Applied Physics Letters, 2009, 94, 221103.	1.5	9

#	Article	IF	CITATIONS
379	Optically controlled semiconductor spin qubits for quantum information processing. Physica Scripta, 2009, T137, 014010.	1.2	9
380	Influence of arsenic flux on the annealing properties of GaInNAs quantum wells for long wavelength laser applications around $1.61\frac{1}{4}$ m. Journal of Crystal Growth, 2009, 311, 1715-1718.	0.7	9
381	Distributed feedback quantum cascade lasers at 13.8â€,Î⅓m on indium phosphide. Applied Physics Letters, 2011, 98, .	1.5	9
382	Determination of operating parameters for a GaAs-based polariton laser. Applied Physics Letters, 2013, 102, .	1.5	9
383	Anisotropic strain-tuning of quantum dots inside a photonic crystal cavity. Semiconductor Science and Technology, 2013, 28, 122002.	1.0	9
384	Temperature dependency of the emission properties from positioned $In(Ga)As/GaAs$ quantum dots. AIP Advances, 2014, 4, .	0.6	9
385	Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength. Semiconductor Science and Technology, 2014, 29, 052001.	1.0	9
386	InAs-based distributed feedback interband cascade lasers. Applied Physics Letters, 2015, 107, 181105.	1.5	9
387	Interface Intermixing in Type II InAs/GalnAsSb Quantum Wells Designed for Active Regions of Mid-Infrared-Emitting Interband Cascade Lasers. Nanoscale Research Letters, 2015, 10, 471.	3.1	9
388	Exciton spin relaxation in InAs/InGaAlAs/InP(001) quantum dashes emitting near 1.55μm. Applied Physics Letters, 2016, 109, 193108.	1.5	9
389	Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation. Nanotechnology, 2016, 27, 434003.	1.3	9
390	Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard. Scientific Reports, 2016, 6, 37653.	1.6	9
391	Probing different regimes of strong field light–matter interaction with semiconductor quantum dots and few cavity photons. New Journal of Physics, 2016, 18, 123031.	1.2	9
392	Molding Photonic Boxes into Fluorescent Emitters by Direct Laser Writing. Advanced Materials, 2017, 29, 1605236.	11.1	9
393	GaSb/AlAsSb resonant tunneling diodes with GaAsSb emitter prewells. Applied Physics Letters, 2017, 111, 171104.	1.5	9
394	Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects: Influence of the excitation intensity. Physical Review B, 2017, 96, .	1.1	9
395	pâ€₹ype Doped AlAsSb/GaSb Resonant Tunneling Diode Photodetector for the Midâ€Infrared Spectral Region. Advanced Optical Materials, 2018, 6, 1800972.	3.6	9
396	Excited states of neutral and charged excitons in single strongly asymmetric InP-based nanostructures emitting in the telecom C band. Physical Review B, 2019, 100, .	1,1	9

#	Article	IF	CITATIONS
397	Quantifying Quantum Coherence in Polariton Condensates. PRX Quantum, 2021, 2, .	3.5	9
398	Highly anisotropic decay rates of single quantum dots in photonic crystal membranes. Optics Letters, 2010, 35, 2768.	1.7	8
399	Single photon emission in the red spectral range from a GaAs-based self-assembled quantum dot. Applied Physics Letters, 2012, 101, 103108.	1.5	8
400	AlGaInAs quantum dot solar cells: tailoring quantum dots for intermediate band formation. Semiconductor Science and Technology, 2012, 27, 032002.	1.0	8
401	Spatial dynamics of stepwise homogeneously pumped polariton condensates. Physical Review B, 2012, 86, .	1.1	8
402	On the oscillator strength in dilute nitride quantum wells on GaAs. Journal of Applied Physics, 2012, 111, .	1.1	8
403	f-band condensates in exciton-polariton lattice systems. Physical Review B, 2014, 89, .	1.1	8
404	Charging dynamics of a floating gate transistor with site-controlled quantum dots. Applied Physics Letters, 2014, 105, 053502.	1.5	8
405	Direct fiber-coupled single photon source based on a photonic crystal waveguide. Applied Physics Letters, 2015, 107, .	1.5	8
406	Polarization instability and the nonlinear internal Josephson effect in cavity polariton condensates generated in an excited state in GaAs microcavities of lowered symmetry. Physical Review B, 2017, 96, .	1.1	8
407	Exciton-polariton flows in cross-dimensional junctions. Physical Review B, 2017, 95, .	1.1	8
408	Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing. Optics Express, 2017, 25, 24816.	1.7	8
409	Wigner Time Delay Induced by a Single Quantum Dot. Physical Review Letters, 2019, 122, 107401.	2.9	8
410	Spatio-temporal coherence in vertically emitting GaAs-based electrically driven polariton lasers. Applied Physics Letters, 2020, 116, 171103.	1.5	8
411	Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots. Physical Review B, 2020, 101, .	1.1	8
412	Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity. Optics Express, 2021, 29, 4174.	1.7	8
413	Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate. Materials, 2021, 14, 5221.	1.3	8
414	Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity. Nature Communications, 2022, 13, .	5.8	8

#	Article	IF	CITATIONS
415	Self-gating in an electron Y-branch switch at room temperature. Applied Physics Letters, 2006, 89, 122109.	1.5	7
416	High-Temperature High-Power Operation of GalnNAs Laser Diodes in the 1220–1240-nm Wavelength Range. IEEE Photonics Technology Letters, 2008, 20, 1766-1768.	1.3	7
417	Weak coupling effects in highâ€Q electrically driven micropillars. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 381-384.	0.8	7
418	Site-controlled growth of InP/GaInP quantum dots on GaAs substrates. Nanotechnology, 2012, 23, 375301.	1.3	7
419	DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 \hat{l} 4m. Proceedings of SPIE, 2013, , .	0.8	7
420	Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots. Applied Physics Letters, 2013, 103, 191113.	1.5	7
421	Molecular beam epitaxial growth of Bi2Se3 nanowires and nanoflakes. Applied Physics Letters, 2014, 105, .	1.5	7
422	A historic experiment redesigned. Nature, 2014, 514, 313-314.	13.7	7
423	Submonolayer Uniformity of Type II InAs/GainSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range. Nanoscale Research Letters, 2015, 10, 402.	3.1	7
424	Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures. Applied Physics Letters, 2015, 106, .	1.5	7
425	Graded band gap GalnNAs solar cells. Applied Physics Letters, 2015, 106, 233902.	1.5	7
426	Bosonic lasers: The state of the art (Review Article). Low Temperature Physics, 2016, 42, 323-329.	0.2	7
427	On-chip light detection using monolithically integrated quantum dot micropillars. Applied Physics Letters, 2016, 108, .	1.5	7
428	Photoluminescence quenching mechanisms in type II InAs/GalnSb QWs on InAs substrates. Optical and Quantum Electronics, 2016, 48, 1.	1.5	7
429	Innovative mid-infrared detector concepts. , 2016, , .		7
430	Photon-statistics excitation spectroscopy of a single two-level system. Physical Review B, 2016, 93, .	1.1	7
431	Optimizing the active region of interband cascade lasers for passive mode-locking. AIP Advances, 2017, 7, .	0.6	7
432	Gate-tunable, normally-on to normally-off memristance transition in patterned LaAlO3/SrTiO3 interfaces. Applied Physics Letters, 2017, 110, .	1.5	7

#	Article	lF	CITATIONS
433	Associative learning with Y-shaped floating gate transistors operated in memristive modes. Applied Physics Letters, 2017, 110, .	1.5	7
434	Electrical and optical switching in the bistable regime of an electrically injected polariton laser. Physical Review B, 2017, 96, .	1.1	7
435	Relaxation Oscillations and Ultrafast Emission Pulses in a Disordered Expanding Polariton Condensate. Scientific Reports, 2017, 7, 7094.	1.6	7
436	High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6–11 \$\$upmu\$\$ μ m range. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	7
437	Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers. Japanese Journal of Applied Physics, 2017, 56, 110301.	0.8	7
438	Enhanced Fluorescence Resonance Energy Transfer in G-Protein-Coupled Receptor Probes on Nanocoated Microscopy Coverslips. ACS Photonics, 2018, 5, 2225-2233.	3.2	7
439	Optical tuning of the charge carrier type in the topological regime of InAs/GaSb quantum wells. Physical Review B, 2018, 98, .	1.1	7
440	Counter-directional polariton coupler. Applied Physics Letters, 2019, 114, 061102.	1.5	7
441	Resonant tunneling of electrons in AlSb/GalnAsSb double barrier quantum wells. AIP Advances, 2020, 10, 055024.	0.6	7
442	Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons. Physical Review B, 2020, 101, .	1.1	7
443	Optical Mapping of Nonequilibrium Charge Carriers. Journal of Physical Chemistry C, 2021, 125, 14741-14750.	1.5	7
444	Fiber-pigtailing quantum-dot cavity-enhanced light emitting diodes. Applied Physics Letters, 2021, 119, .	1.5	7
445	Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure. Optics Express, 2020, 28, 18649.	1.7	7
446	Electro-optical Switching of a Topological Polariton Laser. ACS Photonics, 2022, 9, 405-412.	3.2	7
447	Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature. Applied Physics Letters, 2006, 89, 191113.	1.5	6
448	Influence of light on spin diffusion in weak magnetic fields. Physical Review B, 2009, 79, .	1.1	6
449	Characterization of Three-Terminal Junctions Operated as In-Plane Gated Field-Effect Transistors. IEEE Transactions on Electron Devices, 2009, 56, 306-311.	1.6	6
450	Immersion Layer in Columnar Quantum Dash Structure as a Polarization Insensitive Light Emitter at 1.55 µm. Applied Physics Express, 0, 2, 061102.	1.1	6

#	Article	IF	CITATIONS
451	Room temperature single-electron memory and light sensor with three-dimensionally positioned InAs quantum dots. Applied Physics Letters, 2010, 97, 222112.	1.5	6
452	Carrier loss mechanisms in type II quantum wells for the active region of GaSb-based mid-infrared interband cascade lasers. Optical Materials, 2011, 33, 1817-1819.	1.7	6
453	On the mechanisms of energy transfer between quantum well and quantum dashes. Journal of Applied Physics, 2012, 112, 033520.	1.1	6
454	Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device. Applied Physics Letters, 2014, 105, 081111.	1.5	6
455	Introduction to Issue on Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 6-8.	1.9	6
456	Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling. Nanoscale Research Letters, 2015, 10, 114.	3.1	6
457	Cavity-enhanced AlGaAs/GaAs resonant tunneling photodetectors for telecommunication wavelength light detection at 1.3 \hat{l} /4m., 2015, , .		6
458	Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates. Applied Physics Letters, 2015, 107, 041108.	1.5	6
459	Dynamics of spatial coherence and momentum distribution of polaritons in a semiconductor microcavity under conditions of Bose-Einstein condensation. JETP Letters, 2015, 101, 513-518.	0.4	6
460	Mimicking of pulse shape-dependent learning rules with a quantum dot memristor. Journal of Applied Physics, 2016 , 120 , .	1.1	6
461	Impact of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">ex</mml:mi><mml:mspace width="0.28em"></mml:mspace><mml:mi mathvariant="italic">situ</mml:mi></mml:math> rapid thermal annealing on magneto-optical properties and oscillator strength of In(Ga)As quantum dots. Physical Review B, 2016, 93, .	1.1	6
462	Spatial correlation of two-dimensional bosonic multimode condensates. Physical Review A, 2016, 93, .	1.0	6
463	Observation of the Transition from Lasing Driven by a Bosonic to a Fermionic Reservoir in a GaAs Quantum Well Microcavity. Physical Review Letters, 2016, 117, 127401.	2.9	6
464	Three-dimensional photonic confinement in imprinted liquid crystalline pillar microcavities. Applied Physics Letters, 2017, 110, .	1.5	6
465	Dynamics of the optical spin Hall effect. Physical Review B, 2017, 96, .	1.1	6
466	Polarization, spectral, and spatial emission characteristics of chiral semiconductor nanostructures. JETP Letters, 2017, 106, 643-647.	0.4	6
467	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="italic">n</mml:mi><mml:mtext mathvariant="italic">â^²</mml:mtext><mml:mi mathvariant="italic">i</mml:mi><mml:mtext mathvariant="italic">â^²</mml:mtext><mml:mi mathvariant="italic">n</mml:mi></mml:mrow> GaAs/AlGaAs-based resonant tunneling	1.1	6
468	structures. Physical Review B. 2018, 98. Strongly temperature-dependent recombination kinetics of a negatively charged exciton in asymmetric quantum dots at 1.55 µm. Applied Physics Letters, 2018, 113, 043103.	1.5	6

#	Article	IF	CITATIONS
469	Evanescently Coupled DBR Laser Arrays in the 760–770 nm Wavelength Range. IEEE Photonics Technology Letters, 2019, 31, 1319-1322.	1.3	6
470	Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity. Scientific Reports, 2019, 9, 631.	1.6	6
471	High resolution quantitative multi-species hydrocarbon gas sensing with a cw external cavity quantum cascade laser based spectrometer in the $63 \in 113 \in 114 $ is m range. Journal of Applied Physics, 2019, 125, .),1.1	6
472	Ultrafast Manipulation of a Strongly Coupled Light–Matter System by a Giant ac Stark Effect. ACS Photonics, 2019, 6, 3076-3081.	3.2	6
473	Observation of gain-pinned dissipative solitons in a microcavity laser. APL Photonics, 2020, 5, 086103.	3.0	6
474	Impact of the Energetic Landscape on Polariton Condensates' Propagation along a Coupler. Advanced Optical Materials, 2020, 8, 2000650.	3.6	6
475	Picosecond ultrasonics with miniaturized semiconductor lasers. Ultrasonics, 2020, 106, 106150.	2.1	6
476	Temperature Dependence of Photoluminescence from Epitaxial InGaAs/GaAs Quantum Dots with High Lateral Aspect Ratio. Acta Physica Polonica A, 2011, 120, 883-887.	0.2	6
477	Room Temperature Carrier Kinetics in the W-type GalnAsSb/InAs/AlSb Quantum Well Structure Emitting in Mid-Infrared Spectral Range. Acta Physica Polonica A, 2016, 130, 1224-1228.	0.2	6
478	Intrinsic circularly polarized exciton emission in a twisted van der Waals heterostructure. Physical Review B, 2022, 105, .	1.1	6
479	Single-Photon Counting with Semiconductor Resonant Tunneling Devices. Nanomaterials, 2022, 12, 2358.	1.9	6
480	1240nm high-power GalnNAs laser diodes. Optics Express, 2007, 15, 15187.	1.7	5
481	Wide wavelength tuning of GaAsâ^•AlxGa1â^'xAs bound-to-continuum quantum cascade lasers by aluminum content control. Applied Physics Letters, 2008, 92, .	1.5	5
482	Magnetic-field interaction of spatially confined quantum-well exciton-polaritons. Journal of Physics: Conference Series, 2013, 456, 012033.	0.3	5
483	Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity. Applied Physics Letters, 2014, 104, 091117.	1.5	5
484	Transient optical parametric oscillations in resonantly pumped multistable cavity polariton condensates. Physical Review B, 2015, 92, .	1.1	5
485	On the modified active region design of interband cascade lasers. Journal of Applied Physics, 2015, 117, 084312.	1.1	5
486	Single-mode interband cascade laser sources for mid-infrared spectroscopic applications. Proceedings of SPIE, 2016, , .	0.8	5

#	Article	IF	CITATIONS
487	Exciton dynamics in solid-state green fluorescent protein. Applied Physics Letters, 2017, 110, .	1.5	5
488	Nanoscale Tipping Bucket Effect in a Quantum Dot Transistor-Based Counter. Nano Letters, 2017, 17, 2273-2279.	4.5	5
489	Defect-induced magnetism in II-VI quantum dots. Physical Review B, 2019, 99, .	1.1	5
490	Quantum Beat between Sunlight and Single Photons. Nano Letters, 2020, 20, 152-157.	4.5	5
491	InP-Substrate-Based Quantum Dashes on a DBR as Single-Photon Emitters at the Third Telecommunication Window. Materials, 2021, 14, 759.	1.3	5
492	Room temperature memristive switching in nano-patterned LaAlO3/SrTiO3 wires with laterally defined gates. Applied Physics Letters, 2021, 118 , .	1.5	5
493	Kagome Flatbands for Coherent Exciton-Polariton Lasing. ACS Photonics, 2021, 8, 3193-3200.	3.2	5
494	Room temperature operation of ultra-short quantum cascade lasers with deeply etched Bragg mirrors. Electronics Letters, 2005, 41, 704.	0.5	4
495	Influence of injector doping density and electron confinement on the properties of GaAs/Al0.45Ga0.55As quantum cascade lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 411-414.	0.8	4
496	Mode switching and singlemode tuning in two-segment distributed feedback quantum cascade lasers. Electronics Letters, 2006, 42, 220.	0.5	4
497	Quantum Cascade Microlasers With Two-Dimensional Photonic Crystal Reflectors. IEEE Photonics Technology Letters, 2007, 19, 1937-1939.	1.3	4
498	Contactless electroreflectance of optical transitions in tunnel-injection structures composed of an In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum well and InAs quantum dashes. Journal of Applied Physics, 2010, 108, 086106.	1.1	4
499	Influence of GaSb and AlGalnAsSb as Barrier Material on <formula formulatype="inline"><tex notation="TeX">\$sim\$</tex></formula> 2.8- <formula formulatype="inline"><tex notation="TeX">\$mu\$</tex></formula> m GaSb-Based Diode Laser Properties. IEEE Photonics Technology Letters, 2011, 23, 371-373.	1.3	4
500	Single quantum dot photocurrent spectroscopy in the cavity quantum electrodynamics regime. Physical Review B, 2012, 86, .	1.1	4
501	Effect of Confinement Anisotropy on Excitonic Properties in InAs/InP Quantum Dashes. Acta Physica Polonica A, 2013, 124, 801-804.	0.2	4
502	Photocurrent readout and electro-optical tuning of resonantly excited exciton polaritons in a trap. Physical Review B, 2015, 91, .	1.1	4
503	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471.	1.7	4
504	Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures. Semiconductor Science and Technology, 2016, 31, 095007.	1.0	4

#	Article	IF	CITATIONS
505	Optical probing of the Coulomb interactions of an electrically pumped polariton condensate. Applied Physics Letters, 2017, 110, 151103.	1.5	4
506	Carrier transfer between confined and localized states in type II InAs/GaAsSb quantum wells. Optical and Quantum Electronics, 2017, 49, 1.	1.5	4
507	Two-kind boson mixture honeycomb Hamiltonian of Bloch exciton-polaritons. Physical Review B, 2019, 99, .	1.1	4
508	Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides. Journal of Optics (United Kingdom), 2019, 21, 054001.	1.0	4
509	Directional Coupler: Impact of the Energetic Landscape on Polariton Condensates' Propagation along a Coupler (Advanced Optical Materials 18/2020). Advanced Optical Materials, 2020, 8, 2070072.	3.6	4
510	Understanding photoluminescence in semiconductor Bragg-reflection waveguides. Journal of Optics (United Kingdom), 2021, 23, 035801.	1.0	4
511	A broad-band planar-microcavity quantum-dot single-photon source with a solid immersion lens. Applied Physics Letters, 2021, 118, .	1.5	4
512	Determination of Carrier Density and Dynamics via Magnetoelectroluminescence Spectroscopy in Resonant-Tunneling Diodes. Physical Review Applied, 2021, 15, .	1.5	4
513	Exciton-Polariton Condensates in Zero-, One-, and Two-Dimensional Lattices. Springer Series in Solid-state Sciences, 2013, , 157-175.	0.3	4
514	Distributed Feedback Interband Cascade Lasers and their Spectroscopic Applications in Gas Sensing. , 2014, , .		4
515	Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers. Optics Express, 2018, 26, 31363.	1.7	4
516	Resonant tunneling diode photon number resolving single-photon detectors. , 2019, , .		4
517	Resonant Tunneling Diodes: Mid-Infrared Sensing at Room Temperature. Nanomaterials, 2022, 12, 1024.	1.9	4
518	Discretely tunable single-mode lasers on GaSb using two-dimensional photonic crystal intracavity mirrors. Nanotechnology, 2008, 19, 235202.	1.3	3
519	Mode-Controlled Tapered Lasers Based on Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 780-784.	1.9	3
520	Mid infrared interband cascade lasers forÂsensing applications. Applied Physics B: Lasers and Optics, 2010, 100, 275-278.	1.1	3
521	Acetylene measurement using quantum cascade lasers at $14\hat{l}\frac{1}{4}$ m. Proceedings of SPIE, 2011, , .	0.8	3
522	Short wavelength emission of AlGaInP quantum dots grown on GaP substrate. Nanotechnology, 2011, 22, 415604.	1.3	3

#	Article	IF	Citations
523	Low dimensional GaAs/air vertical microcavity lasers. Applied Physics Letters, 2014, 104, 081113.	1.5	3
524	Interband cascade lasers for the mid-infrared spectral region. , 2014, , .		3
525	Photoresponse of resonant tunneling diode photodetectors as a function of bias voltage. Proceedings of SPIE, 2016, , .	0.8	3
526	Controlling the gain contribution of background emitters in few-quantum-dot microlasers. New Journal of Physics, 2018, 20, 023036.	1.2	3
527	Transient Oscillatory Behaviors of Polariton Condensates. Journal of the Physical Society of Japan, 2018, 87, 094401.	0.7	3
528	Photon-number parity of heralded single photons from a Bragg-reflection waveguide reconstructed loss-tolerantly via moment generating function. New Journal of Physics, 2019, 21, 103025.	1.2	3
529	Technological implementation of a photonic Bier-Glas cavity. Physical Review Materials, 2021, 5, .	0.9	3
530	Difference-frequency generation in an AlGaAs Bragg-reflection waveguide using an on-chip electrically-pumped quantum dot laser. Journal of Optics (United Kingdom), 2021, 23, 085802.	1.0	3
531	Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons. Nano-optics and Nanophotonics, 2015, , 343-361.	0.2	3
532	An electrically pumped polariton laser. , 2013, , .		3
533	Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy. Optical Engineering, 2017, 57, 1.	0.5	3
534	Electronic and Optical Properties of InAs QDs Grown by MBE on InGaAs Metamorphic Buffer. Materials, 2022, 15, 1071.	1.3	3
535	All-Optical Tuning of Indistinguishable Single Photons Generated in Three-Level Quantum Systems. Nano Letters, 2022, 22, 3562-3568.	4.5	3
536	Ultra-compact high transmittance photonic wire bends for monolithic integration on III/V-semiconductors. Electronics Letters, 2006, 42, 1280.	0.5	2
537	Selective etching of independent contacts in a double quantum-well structure: Quantum-gate transistor. Applied Physics Letters, 2008, 92, 062101.	1.5	2
538	Highly efficient electrically triggered quantum dot micropillar single photon source. Journal of Physics: Conference Series, 2010, 245, 012005.	0.3	2
539	Impact of the localized wetting layer states on carrier relaxation processes in GaAs-based quantum dash structures. AIP Conference Proceedings, 2011, , .	0.3	2
540	Above GaSb barrier in type II quantum well structures for mid-infrared emission detected by Fourier-transformed modulated reflectivity. Opto-electronics Review, 2011, 19, .	2.4	2

#	Article	IF	CITATIONS
541	In-plane manipulation of quantum dots in high quality laterally contacted micropillar cavities. Applied Physics Letters, 2011, 98, 191111.	1.5	2
542	Multi-dimensional laser spectroscopy of exciton polaritons with spatial light modulators. Applied Physics Letters, 2012, 100, 072109.	1.5	2
543	Multiexcitonic emission from single elongated InGaAs/GaAs quantum dots. Journal of Applied Physics, 2012, 111, 063522.	1.1	2
544	Recent advances in GaSb-based structures for mid-infrared emitting lasers: spectroscopic study. , 2013, , .		2
545	GaAs-Based Quantum Well Exciton-Polaritons beyond 1 μm. Acta Physica Polonica A, 2013, 124, 817-820.	0.2	2
546	Exciton-polariton lasers in Magnetic Fields. , 2013, , .		2
547	Waveguide superconducting single-photon autocorrelators for quantum photonic applications. Proceedings of SPIE, 2013, , .	0.8	2
548	Exciton-polariton laser diodes. , 2014, , .		2
549	Widely-tunable interband cascade lasers for the mid-infrared. , 2015, , .		2
550	Spatial and temporal dynamics of the crossover from exciton–polariton condensation to photon lasing. Japanese Journal of Applied Physics, 2015, 54, 092801.	0.8	2
551	Influence of carrier concentration on properties of InAs waveguide layers in interband cascade laser structures. Journal of Applied Physics, 2016, 120, .	1.1	2
552	Probing the carrier transfer processes in a self-assembled system with In 0.3 Ga 0.7 As/GaAs quantum dots by photoluminescence excitation spectroscopy. Superlattices and Microstructures, 2016, 93, 214-220.	1.4	2
553	Effect of Dielectric Medium Anisotropy on the Polarization Degree of Emission from a Single Quantum Dash. Acta Physica Polonica A, 2016, 129, A-48-A-52.	0.2	2
554	Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots. Applied Physics Letters, 2018, 113, 021102.	1.5	2
555	Jitter of condensation time and dynamics of spontaneous symmetry breaking in a gas of microcavity polaritons. Physical Review B, 2019, 99, .	1.1	2
556	Bloch Oscillations of Hybrid Lightâ€Matter Particles in a Waveguide Array. Advanced Optical Materials, 2021, 9, 2100126.	3.6	2
557	III-V semiconductor mid-infrared interband cascade light emitters and detectors., 2021,,.		2
558	Effects of the Linear Polarization of Polariton Condensates in Their Propagation in Codirectional Couplers. ACS Photonics, 2021, 8, 2489-2497.	3.2	2

#	Article	IF	Citations
559	High quality factor GaAs microcavity with buried bullseye defects. Physical Review Materials, 2018, 2, .	0.9	2
560	InAs on InP Quantum Dashes as Single Photon Emitters at the Second Telecommunication Window: Optical, Kinetic, and Excitonic Properties. Acta Physica Polonica A, 2017, 132, 382-386.	0.2	2
561	Polariton-lasing in microcavities filled with fluorescent proteins. , 2018, , .		2
562	Using the Autler-Townes and ac Stark effects to optically tune the frequency of indistinguishable single photons from an on-demand source. Physical Review Research, 2022, 4, .	1.3	2
563	Monomodige DFB-Quantenkaskadenlaser mit Metall-Bragg-Rýckkopplungsgittern (Single Mode) Tj ETQq1 1 0.	.784314 r 0.3	gBŢ /Overloc
564	GaAs/AlGaAs-Quantenkaskaden-Laser (GaAs/AlGaAs Quantum Cascade Lasers). TM Technisches Messen, 2005, 72, .	0.3	1
565	Nanostructured semiconductors for optoelectronic applications. , 2006, , .		1
566	Up on the Jaynes-Cummings ladder of an exciton-cavity system. Proceedings of SPIE, 2010, , .	0.8	1
567	Tunable Long Wavelength (\$sim\$2.8 \$mu\$m) GalnAsSb–GaSb Quantum-Well Binary Superimposed Grating Lasers. IEEE Photonics Technology Letters, 2010, , .	1.3	1
568	Magneto-optical cavity quantum electrodynamics effects in quantum dot - micropillar systems. Journal of Physics: Conference Series, 2011, 334, 012011.	0.3	1
569	Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities. , $2011, \ldots$		1
570	Characterization of GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer as 1.3 $\hat{l}^1\!\!/\!\!4$ m photo sensors. , 2012, , .		1
571	Distributed feedback interband cascade lasers for spectroscopy from 3-6 \hat{l} 4m. Proceedings of SPIE, 2014, , .	0.8	1
572	AlGalnAs Quantum Dots for Intermediate Band Formation in Solar Cell Devices. Lecture Notes in Nanoscale Science and Technology, 2014, , 167-186.	0.4	1
573	An electrically pumped polariton laser. , 2015, , .		1
574	Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR. , 2016 , , .		1
575	Acousto-optical nanoscopy of buried photonic nanostructures. Optica, 2017, 4, 588.	4.8	1
576	The issue of OD-like ground state isolation in GaAs- and InP-based coupled quantum dots-quantum well systems. Journal of Physics: Conference Series, 2017, 906, 012019.	0.3	1

#	Article	IF	CITATIONS
577	Photon Echo from an Ensemble of (In,Ga)As Quantum Dots. Semiconductors, 2018, 52, 531-534.	0.2	1
578	Studies of photon echo from exciton ensemble in (In,Ga)As quantum dots. Journal of Physics: Conference Series, 2018, 951, 012029.	0.3	1
579	Mid-infrared detectors based on resonant tunneling diodes and interband cascade structures. , 2018, ,		1
580	Continuous-wave uncooled interband cascade lasers for gas sensing. SPIE Newsroom, 0, , .	0.1	1
581	Semiconductor Cavity Quantum Electrodynamics with Single Quantum Dots. Acta Physica Polonica A, 2009, 116, 445-450.	0.2	1
582	Lateral Spin Diffusion Probed by Two-Color Hanle-MOKE Technique. Acta Physica Polonica A, 2008, 114, 1311-1316.	0.2	1
583	An electrically driven polariton laser. , 2013, , .		1
584	Long wavelength interband cascade lasers on GaSb substrates. , 2017, , .		1
585	Towards integrated quantum photonic circuits on GaAs. , 2019, , .		1
586	Exploring the phase diagram of InAs/GaSb/InAs trilayer quantum wells. Physical Review B, 2022, 105, .	1.1	1
587	Comparative Analysis of λâ‰^9µm GaAs/AlGaAs Quantum Cascade Lasers with Different Injector Doping. Materials Science Forum, 2006, 518, 29-34.	0.3	O
588	Red Emitting, High-Performance AlGalnAs Quantum Dot Lasers., 2007,,.		0
589	Electrically driven quantum dot microcavities for future devices â€" status, potential and challenges. , 2008, , .		O
590	1240nm GalnNAs high power laser diodes. , 2008, , .		0
591	Cavity quantum electrodynamics in electrically addressed quantum dot-micropillar cavities., 2008,,.		О
592	Quantum Dot Microlasers., 2009,,.		0
593	Light-matter interaction of a site-controlled quantum dot- micropillar cavity system. , 2009, , .		0
594	Resonantly probing micropillar cavity modes by photocurrent spectroscopy., 2009,,.		0

#	Article	IF	Citations
595	Quantum dot micropillar lasers. Proceedings of SPIE, 2009, , .	0.8	O
596	Highly Efficient Electrically Driven Quantum Dot Micropillar Single Photon Sources. , 2010, , .		0
597	Electrically driven quantum dot micropillar single photon sources. , 2010, , .		0
598	Towards intermediate-band formation in solar cells with AlGaInAs quantum dots., 2012,,.		0
599	Detecting Single Photons Using Superconducting Nanowires. , 2012, , .		0
600	Relaxation dynamics of optically imprinted polariton wires. , 2012, , .		0
601	Quantum dot microlasers with external feedback: a chaotic system close to the quantum limit. Proceedings of SPIE, 2012, , .	0.8	0
602	Site-controlled growth of InP/InGaP quantum dots. , 2012, , .		0
603	Quantum dot â§" Microlasers with external feedback â§" A chaotic system close to the quantum limit. , 2012, , .		0
604	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. , 2012, , .		0
605	Single spins in semiconductor quantum dot microcavities. , 2013, , .		0
606	Diamagnetic shift and second order coherence for polariton lasing in subwavelength grating based microcavity., 2013,,.		0
607	On-Chip Quantum Optics using Electrically Driven Quantum Dot - Micropillar Cavities. , 2013, , .		0
608	Degenerate high-orbital microcavity exciton-polariton condensates in a lattice., 2013,,.		0
609	Parametric polariton scattering in quantum wires and coupled planar microcavities., 2013,,.		0
610	Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments. Proceedings of SPIE, 2013, , .	0.8	0
611	Bright quantum dot single photon source based on a low Q defect cavity. , 2014, , .		0
612	Free Space Quantum Key Distribution over 500 Meters using Electrically Triggered Quantum Dot Single-Photon Sources. , 2014, , .		0

#	Article	IF	CITATIONS
613	Semiconductor Exciton-Polariton Lasers. , 2014, , .		O
614	Influence of interactions with non-condensed particles on the coherence of a 1D polariton condensate. , 2014, , .		0
615	Polariton Laser Diodes. , 2014, , .		0
616	Optical characterization of type II quantum wells for long-wavelength mid-infrared interband cascade lasers. Proceedings of SPIE, 2014, , .	0.8	0
617	Optical Properties of Quantum Dashes. Solid State Phenomena, 2014, 213, 3-11.	0.3	0
618	Analysis of Single Photon Micropillar Optical Switch using Semi-Analytical Model., 2014,,.		0
619	Controlled Lasing from Active Optomechanical Resonators. , 2014, , .		0
620	A detailed study of self-assembled (Al,Ga)InP quantum dots grown by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2601-2610.	0.8	0
621	Quantum dot photonic crystal circuits. , 2015, , .		0
622	A Coherent Polariton Lasers. , 2015, , .		0
623	Injection Locking of High- \hat{I}^2 Quantum Dot Microlasers. , 2016, , .		0
624	Half adder capabilities of a coupled quantum dot device. Nanotechnology, 2016, 27, 215201.	1.3	0
625	Quantum dot-micropillars: A bright source of coherent single photons. , 2016, , .		0
626	Interband Cascade Lasers for gas sensing. , 2016, , .		0
627	Strategies for bright single photon sources in solid state: Coupled quantum dot cavities and monolayer-based systems. , 2016, , .		0
628	Mid-infrared interband cascade lasers. , 2016, , .		0
629	Interband cascade laser sources in the mid-infrared for green photonics. Proceedings of SPIE, 2016, , .	0.8	0
630	Laterally coupled DFB interband cascade laser with tapered ridge. Electronics Letters, 2017, 53, 743-744.	0.5	0

#	Article	IF	Citations
631	Fluorescent Proteins: Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins (Advanced Optical Materials 1/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
632	Deterministic giant photon phase shift from a single charged quantum dot., 2017,,.		0
633	InGaAs quantum-dot micropillar emitters: From spontaneous emission and superradiance to lasing. , 2017, , .		0
634	Photoluminescence imaging based nano-positioning of single quantum dots for high-performance single-photon generation. , $2017, \dots$		0
635	Optimizing single-mode collection from pointlike sources of single photons with adaptive optics. Optics Express, 2017, 25, 18629.	1.7	0
636	Localization-Delocalization Transition in Disordered One-Dimensional Exciton-Polariton System. Semiconductors, 2018, 52, 458-461.	0.2	0
637	Double-waveguide interband cascade laser with dual-wavelength emission. Applied Physics Letters, 2018, 113, 251105.	1.5	0
638	Boosting the Localization Precision in Super-Resolution Microscopy: booSTORM. Biophysical Journal, 2018, 114, 530a.	0.2	0
639	Oscillations of the Degree of Circular Polarization in the Optical Spin Hall Effect. Physics of the Solid State, 2018, 60, 1606-1610.	0.2	0
640	Ring Interband Cascade Lasers for Environmental Monitoring. , 2019, , .		0
641	Entanglement generation in semiconductor nanostructures. , 2021, , .		0
642	Hyperspectral study of the coupling between trions in WSe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>2</mml:mn></mml:msub></mml:math> monolayers to a circular Bragg grating cavity. Comptes Rendus Physique, 2021, 22, 97-105.	0.3	0
643	Modification of emission rate in broadband deterministic micropillar cavities. , 2021, , .		0
644	Coherent dynamics of one and two-photon states in a strongly coupled single quantum dot-cavity system. , 2009, , .		0
645	Cavity Quantum Electrodynamics in Electrically Driven Quantum Dot-Micropillar Cavities., 2009,,.		0
646	Interband Cascade Lasers for Wavelength Specific Applications in the 3-4 μm Spectral Range. , 2010, , .		0
647	Quantum Optics in Wavelength Scale Structures. , 2010, , .		0
648	Short Wavelength (929nm) AllnGaAs Quantum Dot Passively Mode-Locked Lasers. , 2013, , .		0

#	Article	IF	CITATIONS
649	Interband Cascade Lasers with External Differential Quantum Efficiency > 50% at Room Temperature. , 2013, , .		O
650	Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. , $2013,$, .		0
651	Observation of BKT Transition in BEC of Exciton-Polaritons in a Semiconductor Microcavity. , 2013, , .		0
652	Two Photon Interference from Semiconductor Quantum Dots. , 2014, , .		0
653	Towards quantum computing and quantum networking with solid-state single spins and single photons. , 2014, , .		0
654	Distributed Feedback Interband Cascade Laser at 3550 nm for Formaldehyde Measurements. , 2014, , .		0
655	Coherence Properties of a Single-Mode Polariton Laser. , 2014, , .		0
656	Quantum-dot microcavity lasers with superradiant coupling and non-classical light emission. , 2014, , .		0
657	Background-free Quantum Frequency Downconversion for Two-photon Interference of Heterogeneous Photon Sources. , 2015, , .		O
658	Highly indistinguishable photons from a QD-microcavity with a large Purcell-factor. , 2015, , .		0
659	Macroscopic Kerr Rotation from a Bright Negatively Charged Quantum Dot in a Low-Q Micropillar Cavity. , $2015, , .$		0
660	Optical Bistability in Electrically Driven Polariton Condensates., 2015,,.		0
661	Efficient Single Photon Collection based on Phased-Matched Microfiber-Microcavity Coupling. , 2016, , .		O
662	Interband Cascade Lasers in the MIR for Sensing Applications. , 2016, , .		0
663	Talbot effect for exciton-polaritons. , 2016, , .		O
664	Efficient deterministic giant photon phase shift from a single charged quantum dot., 2017,,.		0
665	Giant Photon Bunching and Quantum Correlations in Superradiant Quantum-Dot Microcavity Lasers. , 2017, , .		O
666	Synchronization of Mutually Coupled High- \hat{l}^2 Quantum Dot Microlasers. , 2017, , .		0

#	Article	IF	CITATIONS
667	Mode switching in bimodal microcavities and its connection to Bose condensation. , 2017, , .		0
668	Antimonide-based resonant tunneling photodetectors for mid infrared wavelength light detection. , 2017, , .		0
669	Resonant tunneling diode photodetectors for mid-infrared gas-sensing based on GaSb substrate. , 2018, , .		О
670	Semiconducting 2D-Materials: nano-sandbox for fundamental physics and new platform for optical coatings, light emission and quantum light sources. , 2019, , .		0
671	Quantum dot spins in micropillar cavities. , 2019, , .		O
672	DFB Interband Cascade Laser Array for mid infrared spectroscopy. , 2019, , .		0
673	Quantum dots in micropillar cavities for scalable photonic applications. , 2019, , .		O
674	Enhanced Light-Matter Interaction in TMDC-Materials by Integration in Resonant Layer Architectures. , 2021, , .		0
675	Special topic on non-classical light emitters and single-photon detectors. Applied Physics Letters, 2022, 120, 010401.	1.5	0