Takashi Tsuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7197464/publications.pdf

Version: 2024-02-01

759233 888059 65 485 12 17 citations h-index g-index papers 83 83 83 433 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Enhancement of Chiroptical Responses of <i>trans</i> \hat{l} >â \in Bis[(βâ \in iminomethyl)naphthoxy]platinum(II) Complexes with Distorted Square Planar Coordination Geometry. ChemistryOpen, 2022, 11, e202100277.	1.9	10
2	Enhancement of Chiroptical Responses of <i>trans</i> $\hat{a} \in Bis[(\hat{l}^2 \hat{a} \in Aiminomethyl)]$ naphthoxy]platinum(II) Complexes with Distorted Square Planar Coordination Geometry. ChemistryOpen, 2022, 11, e202200061.	1.9	11
3	Sign control of circularly polarized luminescence of chiral Schiff-base Zn(<scp>ii</scp>) complexes through coordination geometry changes. Chemical Communications, 2022, 58, 7503-7506.	4.1	7
4	Circularly Polarized Luminescence of Chiral Platinum(II) Complexes with Tetradentate Salen Ligands. Chemistry Letters, 2022, 51, 832-835.	1.3	7
5	Twofold and Threefold Sinusoidal Patterns in Coupled Molecular Motions of 184,025 Structures of Phenylethane, Nitroethane, and Carboxylate Derivatives. Journal of Organic Chemistry, 2022, 87, 7798-7805.	3.2	1
6	Multi-colour circularly polarized luminescence properties of chiral Schiff-base boron difluoride complexes. Physical Chemistry Chemical Physics, 2022, 24, 15502-15510.	2.8	9
7	Rotation about a Covalent Bond and Pyramidalization of an Adjacent sp2 Center are a Synchronized Molecular Motion. Journal of Organic Chemistry, 2021, 86, 10420-10426.	3.2	3
8	Chirality of the Conformation Attacks the Planarity of the sp ² Carbon Atom in a Covalent Bond. Journal of Organic Chemistry, 2021, 86, 10414-10419.	3.2	2
9	A Chirality Chain in Phenylglycine, Phenylpropionic Acid, and Ibuprofen. Symmetry, 2021, 13, 55.	2.2	2
10	Data Utilization Platform for Understanding, Utilizing, and Simply Analyzing Various Data of Business Systems in the Railway Field. SICE Journal of Control Measurement and System Integration, 2020, 13, 77-83.	0.7	0
11	Organic aspects: photochemistry of alkenes, dienes, polyenes (2018–2019). Photochemistry, 2020, , 71-112.	0.2	O
12	Selective distortion of the planar group C \hat{l}_{\pm} C'(O)O to a chiral flat tetrahedron in the amino acid alanine. Chirality, 2019, 31, 628-634.	2.6	6
13	Chirality in amino acids beyond the C \hat{l}_{\pm} configuration. Chirality, 2019, 31, 635-640.	2.6	5
14	Development of Data Utilization Platform for Utilizing a Large Amount of Various Data of Business Systems in the Railway Field., 2019, , .		0
15	Chiral Selectivity in the Achiral Amino Acid Glycine. Journal of Organic Chemistry, 2019, 84, 16199-16203.	3.2	6
16	PPh ₃ Propeller Diastereomers: Bonding Motif Ph _{PPh₃} Face-On π-Ar in Half-Sandwich Compounds [(π-Ar)LL′MPPh ₃]. ACS Omega, 2018, 3, 982-990.	3.5	6
17	Trendâ€Analysis of Solidâ€State Structures: Lowâ€Energy Conformational â€~Reactions' Involving Directed and Coupled Movements in Halfâ€Sandwich Compounds [CpFe(CO){C(=O)R}PPh ₃]. ChemistryOpen, 2018, 7, 313-318.	1.9	О
18	Trend-Analysis of Solid-State Structures: Low-Energy Conformational  Reactions' Involving Directed and Coupled Movements in Half-Sandwich Compounds [CpFe(CO){C(=O)R}PPh3]. ChemistryOpen, 2018, 7, 312-312.	1.9	0

#	Article	IF	CITATIONS
19	The Chirality Chain in Valine: How the Configuration at the C α Position through the O cis Câ \in 2C α N Torsional System Leads to Distortion of the Planar Group C α Câ \in 2(O cis)O trans to a Flat Tetrahedron. ChemistryOpen, 2018, 7, 696-700.	1.9	7
20	Kinetic and Thermodynamic Control of Nitrile Dissociation in the Complexes (RFe,RC)/(SFe,RC)-[CpFe(Prophos)NCR]X (X = I, PF6) by the Inductive Effect. Organometallics, 2018, 37, 1892-1899.	2.3	2
21	Organic aspects: photochemistry of alkenes, dienes, polyenes (2016–2017). Photochemistry, 2018, , 78-115.	0.2	0
22	Kinetics of the S _N 1 Dissociation of Ligands L (Nitriles, Phosphines) in the Complexes [CpFe(P-P)L]PF ₆ with Variable Chelate Ring Size. A Surprising Bimolecular Substitution in the Nonchelate Complex [CpFe(PPh ₂ Me) ₂ L]PF ₆ . Organometallics, 2017, 36, 2424-2436.	2.3	1
23	Comment on "Conformational analysis of triphenylphosphine ligands in stereogenic monometallic complexes: tools for predicting the preferred configuration of the triphenylphosphine rotor―by J. F. Costello, S. G. Davies, E. T. F. Gould and J. E. Thomson, Dalton Trans., 2015, 44 , 5451. Dalton Transactions. 2017, 46, 5103-5109.	3.3	9
24	Synthesis and structural characterization of Ni(II) complexes with the chiral CpH(PNMent) tripod ligand. Journal of Coordination Chemistry, 2017, 70, 3459-3470.	2.2	0
25	Co-Crystallization of Half-Sandwich (R M ,R C)/(S M ,R C) Diastereomers in Single Crystals. European Journal of Inorganic Chemistry, 2016, 2016, 5400-5400.	2.0	1
26	Co-Crystallization of Half-Sandwich (RM,RC)/(SM,RC) Diastereomers in Single Crystals. European Journal of Inorganic Chemistry, 2016, 2016, 5405-5410.	2.0	1
27	CH/Ï€-stabilization controls the architecture of the PPh3 propeller in transition-metal complexes. CH/Ï€- and Cl/Ï€-interactions determine its orientation within the molecule. Inorganica Chimica Acta, 2016, 446, 132-142.	2.4	9
28	Alkenes, alkynes, dienes, polyenes. Photochemistry, 2016, , 61-131.	0.2	1
29	Cyclopentadienyl/Phenyl Attraction in CpM–L–E–Ph Compounds by CH/π Interactions.		9
	Organometallics, 2015, 34, 1287-1293.	2.3	9
30	Organometallics, 2015, 34, 1287-1293. Methyl/Phenyl Attraction by CH/Ĩ€ Interaction in 1,2-Substitution Patterns. Journal of Organic Chemistry, 2014, 79, 11454-11462.	3.2	20
30	Methyl/Phenyl Attraction by CH/Ĩ€ Interaction in 1,2-Substitution Patterns. Journal of Organic		
	Methyl/Phenyl Attraction by CH/Ĩ€ Interaction in 1,2-Substitution Patterns. Journal of Organic Chemistry, 2014, 79, 11454-11462. Control of the Conformation of M–Prophos Chelate Rings by CH/Ĩ€ Interactions. Organometallics,	3.2	20
31	Methyl/Phenyl Attraction by CH/Ĩ€ Interaction in 1,2-Substitution Patterns. Journal of Organic Chemistry, 2014, 79, 11454-11462. Control of the Conformation of M–Prophos Chelate Rings by CH/Ĩ€ Interactions. Organometallics, 2014, 33, 2257-2265.	3.2	20
31	Methyl/Phenyl Attraction by CH/Ï€ Interaction in 1,2-Substitution Patterns. Journal of Organic Chemistry, 2014, 79, 11454-11462. Control of the Conformation of M–Prophos Chelate Rings by CH/Ĩ€ Interactions. Organometallics, 2014, 33, 2257-2265. Chapter 3. Alkenes, alkynes, dienes, polyenes. Photochemistry, 2014, , 43-88. Tuning the Dissociation of the Fe–PPh ₂ (OR) Bond in Chiral-at-Metal Complexes [CpFe(Prophos)PPh ₂ (OR)]PF ₆ (R = Me, Et, <i>i<i i="">i</i>i>i</i> i>ii>ii <td>3.2 2.3 0.2</td> <td>20 12 0</td>	3.2 2.3 0.2	20 12 0
31 32 33	Methyl/Phenyl Attraction by CH/Ĩ€ Interaction in 1,2-Substitution Patterns. Journal of Organic Chemistry, 2014, 79, 11454-11462. Control of the Conformation of M–Prophos Chelate Rings by CH/Ĩ€ Interactions. Organometallics, 2014, 33, 2257-2265. Chapter 3. Alkenes, alkynes, dienes, polyenes. Photochemistry, 2014, , 43-88. Tuning the Dissociation of the Fe–PPh ₂ (OR) Bond in Chiral-at-Metal Complexes [CpFe(Prophos)PPh ₂ (OR)]PF ₆ (R = Me, Et, <i>iiPr, <ii>t</ii>Pr, <ii>t</ii>Preparative Trick of N₂ Bubbling. Organometallics, 2013, 32, 4904-4911. Synthesis and structural characterization of isomeric palladium(II) complexes with chiral</i>	3.2 2.3 0.2	20 12 0

#	Article	IF	CITATIONS
37	16- and 17-Electron Intermediates in the MeCN/RNC Exchange in Chiral-at-Metal [CpFe(Prophos)NCMe]X (X = I, PF $<$ sub $>$ 6 $<$ /sub $>$). Organometallics, 2012, 31, 3395-3401.	2.3	3
38	Change of the Fe Configuration in Chiral Halfâ€Sandwich Complexes Within the Solvent Cage. Angewandte Chemie - International Edition, 2012, 51, 1067-1070.	13.8	7
39	Chiral-at-Metal Compounds [CpFe(Prophos)L] (L = Cl, I, CN), [CpFe(Prophos)CO]X (X = I,) Tj ETQq1 1 0.784314	rgBT/Ove	rlock 10 Tf 50
40	Diastereomer Ratio of Products as a Mechanistic Probe in Epimerization and Ligand Exchange of Chiral-at-Metal [CpFe(Prophos)NCMe]X (X = I, PF6). Organometallics, 2011, 30, 3666-3676.	2.3	13
41	Pyramidal Stability of 16-Electron Half-Sandwich Intermediates [CpRu(Pâ^'P)]+ with Pâ^'P Ligands Forming Four- to Six-Membered Chelate Rings. Organometallics, 2010, 29, 428-435.	2.3	8
42	Alkenes, alkynes, dienes, polyenes. Photochemistry, 2010, , 110-142.	0.2	1
43	Ligand Dissociation: Planar or Pyramidal Intermediates?. Accounts of Chemical Research, 2009, 42, 1501-1510.	15.6	36
44	Pyramidal Stability of Chiral-at-Metal Half-Sandwich 16-Electron Fragments [CpRu(Pâ^'P′)]. Organometallics, 2008, 27, 3514-3525.	2.3	21
45	Synthesis of chiral-at-metal half-sandwich ruthenium(II) complexes with the CpH(PNMent) tripod ligand. Journal of Organometallic Chemistry, 2006, 691, 2739-2747.	1.8	6
46	Cycloaddition reaction of schiff bases with ketenes generated by pyrolysis of 2â€arylâ€substituted 1,5,7â€trioxaspiro[2.5]octaneâ€4,8â€diones. Journal of Heterocyclic Chemistry, 2006, 43, 21-28.	2.6	11
47	The Photochemical Reactivity of the Allenyl-Vinyl Methane System. ChemInform, 2004, 35, no.	0.0	0
48	Carboplatin derivatives with superior antitumor activity compared to the parent compound. Inorganica Chimica Acta, 2004, 357, 4452-4466.	2.4	28
49	Stabilization of the labile metal configuration in halfsandwich complexes [CpRh(PN)Hal]X. Journal of Organometallic Chemistry, 2004, 689, 4244-4262.	1.8	12
50	Stabilization of the Labile Metal Configuration in Half-Sandwich Complexes with Tripod Ligands. Organometallics, 2004, 23, 4006-4008.	2.3	17
51	The Photochemical Reactivity of the Allenyl–Vinyl Methane System. , 2003, , .		0
52	Allenyl(vinyl)methane Photochemistry. Photochemistry of 2-(3,4-Pentadienylidene)indan-1,3-dione Derivatives. Heterocycles, 2002, 57, 2129.	0.7	4
53	Allenyl(vinyl)methane photochemistry. Photochemistry of \hat{l}^3 -allenyl-substituted \hat{l}_{\pm},\hat{l}^2 -unsaturated enone derivatives. Tetrahedron, 2002, 58, 7681-7689.	1.9	11
54	Allenyl(vinyl)methane photochemistry. Photochemistry of \hat{l}^3 -(3-methyl-1-phenyl-1,2-butadienyl)-substituted $\hat{l}\pm,\hat{l}^2$ -unsaturated ester and nitrile derivatives. Tetrahedron, 2001, 57, 4831-4840.	1.9	13

Takashi Tsuno

#	Article	IF	CITATIONS
55	Allenyl(vinyl)methane Photochemistry. Photochemistry of Methyl 4,4-Dimethyl-2,5,6-heptatrienoate Derivatives. Bulletin of the Chemical Society of Japan, 1999, 72, 519-531.	3.2	18
56	Allenyl(vinyl)methane photochemistry. Photochemistry of 4,4,7-trimethyl-5-phenyl-2,5,6-octatrienate derivatives. Tetrahedron Letters, 1997, 38, 1581-1584.	1.4	10
57	Allenyl(vinyl)methane Photochemistry. Photochemistry of 5-[2-(1,2-Propadienyl)-Substituted Alkylidene]-2,2-dimethyl-1,3-dioxane-4,6-diones. Bulletin of the Chemical Society of Japan, 1995, 68, 3175-3188.	3.2	17
58	A Facile Epoxidation of 5-Methylene-1,3-dioxane-4,6-diones with Hydrogen Peroxide without Catalyst. Heterocycles, 1994, 38, 2631.	0.7	12
59	Addition Reaction of Photoenols from o-Methyl-substituted Aromatic Ketones with 5-Alkylidene-1,3-dioxane-4,6-dione Derivatives. Heterocycles, 1994, 38, 859.	0.7	8
60	Photochemistry of g-Allenyl-substituted Conjugated Alkylidenecycloalkanones. Heterocycles, 1994, 38, 1721.	0.7	8
61	Photochemistry of o-methyl-substituted aromatic ketone with 5-isobutylidene-1,3-dioxane-4-,6-dione derivatives. Tetrahedron Letters, 1992, 33, 2829-2832.	1.4	8
62	Photochemistry of Isopropylidene 3,3,6-Trimethyl-1,4,5-heptatriene-1,1-dicarboxylate and Its Homologues. Chemistry Letters, 1991, 20, 503-506.	1.3	12
63	Diels-Alder Reaction of Photoenol of 2-Methylbenzaldehyde with 5-Alkyldene-1,3-dioxane-4,6-dione Derivatives. Heterocycles, 1991, 32, 1989.	0.7	7
64	Epoxidation of 5-Alkylidene and 5-Benzylidene Substituted 1,3-Dioxane-4,6-dione Derivatives by Hydrogen Peroxide without Catalyst. Heterocycles, 1990, 31, 1581.	0.7	3
65	Alkenes, alkynes, dienes, polyenes. Photochemistry, 0, , 73-105.	0.2	O