
Doris A Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7196578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 2022, 118, 2428-2436.	3.8	6
2	Restoring anatomical complexity of a left ventricle wall as a step toward bioengineering a human heart with human induced pluripotent stem cell-derived cardiac cells. Acta Biomaterialia, 2022, 141, 48-58.	8.3	10
3	Cues from human atrial extracellular matrix enrich the atrial differentiation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials Science, 2021, 9, 3737-3749.	5.4	8
4	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
5	Sex-Based Differences in Autologous Cell Therapy Trials in Patients With Acute Myocardial Infarction: Subanalysis of the ACCRUE Database. Frontiers in Cardiovascular Medicine, 2021, 8, 664277.	2.4	1
6	Characterization of perfusion decellularized whole animal body, isolated organs, and multiâ€organ systems for tissue engineering applications. Physiological Reports, 2021, 9, e14817.	1.7	9
7	Engineering Functional Vasculature in Decellularized Lungs Depends on Comprehensive Endothelial Cell Tropism. Frontiers in Bioengineering and Biotechnology, 2021, 9, 727869.	4.1	3
8	Peripheral Blood Biomarkers Associated With Improved Functional Outcome in Patients With Chronic Left Ventricular Dysfunction: A Biorepository Evaluation of the FOCUS-CCTRN Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 698088.	2.4	1
9	Strategies for iPSC expansion. , 2021, , 209-229.		0
10	Analysis of sex-based differences in clinical and molecular responses to ischemia reperfusion after lung transplantation. Respiratory Research, 2021, 22, 318.	3.6	4
11	Meta-analysis of short- and long-term efficacy of mononuclear cell transplantation in patients with myocardial infarction. American Heart Journal, 2020, 220, 155-175.	2.7	7
12	Are we close to bioengineering a human-sized, functional heart?. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1357-1360.	0.8	3
13	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	4.0	24
14	Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. Journal of Tissue Engineering, 2020, 11, 204173142092148.	5.5	24
15	Gelatin Promotes Cell Retention Within Decellularized Heart Extracellular Matrix Vasculature and Parenchyma. Cellular and Molecular Bioengineering, 2020, 13, 633-645.	2.1	10
16	An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nature Electronics, 2020, 3, 775-784.	26.0	126
17	Impaired therapeutic efficacy of bone marrow cells from post-myocardial infarction patients in the TIME and LateTIME clinical trials. PLoS ONE, 2020, 15, e0237401.	2.5	3
18	Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. International Journal of Molecular Sciences, 2020, 21, 6013.	4.1	14

#	Article	IF	CITATIONS
19	Tissue-engineered cardiovascular products. , 2020, , 1521-1536.		2
20	Decellularization of whole hearts for cardiac regeneration. , 2020, , 291-310.		4
21	The Future of Tissue Engineering in Heart Transplantation. Texas Heart Institute Journal, 2019, 46, 73-74.	0.3	4
22	Sex-Based Differences in Outcomes AfterÂMitral Valve Surgery for SevereÂlschemic Mitral Regurgitation. JACC: Heart Failure, 2019, 7, 481-490.	4.1	37
23	Pedro Brugada and Peter Schwartz share the Lefoulon-Delalande Foundation Scientific Prize 2019. European Heart Journal, 2019, 40, 2670-2670.	2.2	0
24	Whole-heart scaffoldsâ \in "how to build a heart. , 2019, , 617-642.		2
25	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circulation Research, 2019, 124, 938-951.	4.5	28
26	Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System. Stem Cells International, 2019, 2019, 1-9.	2.5	30
27	Mobilizing EPCs: It is not just an acute issue. International Journal of Cardiology, 2018, 257, 272-273.	1.7	2
28	Texas Heart Institute International Symposium on Cardiovascular Regenerative Medicine. Circulation Research, 2018, 122, 205-206.	4.5	0
29	Decellularized matrices in regenerative medicine. Acta Biomaterialia, 2018, 74, 74-89.	8.3	232
30	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQq0	0 0 rgBT /	Overlock 10 7 94
31	TIME Trial: Effect of Timing of Stem Cell Delivery Following ST-Elevation Myocardial Infarction on the Recovery of Clobal and Regional Left Ventricular Function. Circulation Research, 2018, 122, 479-488.	4.5	50
32	What will it take before a bioengineered heart will be implanted in patients?. Current Opinion in Organ Transplantation, 2018, 23, 664-672.	1.6	5
33	Cover Image, Volume 29, Issue 11. Journal of Cardiovascular Electrophysiology, 2018, 29, i.	1.7	0
34	Decellularization of Whole Human Heart Inside a Pressurized Pouch in an Inverted Orientation. Journal of Visualized Experiments, 2018, , .	0.3	14
35	Whole Cardiac Tissue Bioscaffolds. Advances in Experimental Medicine and Biology, 2018, 1098, 85-114.	1.6	17
36	A Path Forward for Regenerative Medicine. Circulation Research, 2018, 123, 495-505.	4.5	6

#	Article	IF	CITATIONS
37	Racial Disparities in CD34+ Cells and Their Influence on Cardiovascular Repair. Circulation Research, 2018, 123, 401-403.	4.5	0
38	Leadless multisite pacing: A feasibility study using wireless power transfer based on Langendorff rodent heart models. Journal of Cardiovascular Electrophysiology, 2018, 29, 1588-1593.	1.7	4
39	Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles. Artificial Organs, 2018, 42, 970-982.	1.9	36
40	Recellularization of rat liver: An in vitro model for assessing human drug metabolism and liver biology. PLoS ONE, 2018, 13, e0191892.	2.5	30
41	Progress in experimental and clinical subpulmonary assistance for Fontan circulation. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1949-1956.	0.8	20
42	Abstract 17032: Substrate Stiffness Alters the Kinetics of Sodium Channel Nav1.5 and Depolarization of Cardiomyocytes. Circulation, 2018, 138, .	1.6	0
43	Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. Journal of Cellular Physiology, 2017, 232, 3139-3145.	4.1	8
44	Maximizing Cardiac Repair. Circulation Research, 2017, 120, 30-32.	4.5	28
45	Bioengineering Hearts: Simple yet Complex. Current Stem Cell Reports, 2017, 3, 35-44.	1.6	45
46	Response to letter to Editor "Comment on †Inverted orientation improves decellularization of whole porcine hearts' by Lee et al.― Acta Biomaterialia, 2017, 53, 645.	8.3	1
47	The ubiquitin-proteasome system: A potential therapeutic target for heart failure. Journal of Heart and Lung Transplantation, 2017, 36, 708-714.	0.6	34
48	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46
49	Peripheral Blood Cytokine Levels After Acute Myocardial Infarction. Circulation Research, 2017, 120, 1947-1957.	4.5	33
50	Premature atherosclerosis in premenopausal women: Does cytokine balance play a role?. Medical Hypotheses, 2017, 109, 38-41.	1.5	2
51	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
52	Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Research in Cardiology, 2017, 112, 3.	5.9	16
53	Inverted orientation improves decellularization of whole porcine hearts. Acta Biomaterialia, 2017, 49, 181-191.	8.3	45
54	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133

#	Article	IF	CITATIONS
55	Organogenesis. , 2016, , 349-373.		1
56	Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial. American Heart Journal, 2016, 179, 142-150.	2.7	18
57	Identification of Bone Marrow Cell Subpopulations Associated with Improved Functional Outcomes in Patients with Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial. Cell Transplantation, 2016, 25, 1675-1687.	2.5	32
58	Report of the National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in Cardiovascular Disease. Hypertension, 2016, 67, 802-807.	2.7	58
59	Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials, 2016, 98, 64-78.	11.4	52
60	Data from acellular human heart matrix. Data in Brief, 2016, 8, 211-219.	1.0	14
61	Orthotopic transplantation of a tissue engineered diaphragm in rats. Biomaterials, 2016, 77, 320-335.	11.4	37
62	Signature of Responders—Lessons from Clinical Samples. , 2016, , 445-460.		0
63	Regenerative Medicine and the Cardiovascular System: A Good Start**Modified from a manuscript published in Circulation Research 2014;115(12);271–78 , 2016, , xvii-xxii.		0
64	Changing of the guard?: FigureÂ1. European Heart Journal, 2015, 36, 1711-1713.	2.2	1
65	Bone Marrow Characteristics Associated With Changes in Infarct Size After STEMI. Circulation Research, 2015, 116, 99-107.	4.5	65
66	Stem Cells and Liver Regeneration. , 2015, , 1429-1437.		0
67	Acellular human heart matrix: A critical step toward whole heart grafts. Biomaterials, 2015, 61, 279-289.	11.4	149
68	Automated Decellularization of Intact, Human-Sized Lungs for Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 94-103.	2.1	90
69	Abstract 15627: Identification of Cardiovascular Risk Factors Associated With Bone Marrow Cell Subsets in Patients With STEMI: A Biorepository Evaluation From the CCTRN TIME and LateTIME Clinical Trials. Circulation, 2015, 132, .	1.6	0
70	Optimizing Recellularization of Whole Decellularized Heart Extracellular Matrix. PLoS ONE, 2014, 9, e90406.	2.5	136
71	Till Truth Makes All Things Plain. Circulation Research, 2014, 115, 908-910.	4.5	3
72	Mesenchymal Precursor Cells as Adjunctive Therapy in Recipients of Contemporary Left Ventricular Assist Devices. Circulation, 2014, 129, 2287-2296.	1.6	139

#	Article	IF	CITATIONS
73	Detailed Analysis of Bone Marrow From Patients With Ischemic Heart Disease and Left Ventricular Dysfunction. Circulation Research, 2014, 115, 867-874.	4.5	65
74	Bone Marrow Mononuclear Cell Therapy for Acute Myocardial Infarction. Circulation Research, 2014, 114, 1564-1568.	4.5	45
75	Building New Hearts: A Review of Trends in Cardiac Tissue Engineering. American Journal of Transplantation, 2014, 14, 2448-2459.	4.7	48
76	Ethics of bioengineering organs and tissues. Expert Opinion on Biological Therapy, 2014, 14, 879-882.	3.1	27
77	Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nature Communications, 2014, 5, 3562.	12.8	50
78	Abstract 16663: Patient and Cell Characteristics Associated With Clinical Outcomes in the CCTRN LateTIME Trial. Circulation, 2014, 130, .	1.6	0
79	Abstract 16161: Bone Marrow Characteristics are Associated With Changes in Infarct Size Following STEMI: A Biorepository Evaluation From the CCTRN TIME Trial. Circulation, 2014, 130, .	1.6	1
80	Recruiting for Acute Myocardial Infarction Cell Therapy Trials: Challenges and Best Practices for the CCTRN. Clinical Researcher, 2014, 28, 71-77.	0.5	2
81	Phase II Clinical Research Design in Cardiology. Circulation, 2013, 127, 1630-1635.	1.6	44
82	Tracheal regeneration: Evidence of bone marrow mesenchymal stem cell involvement. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1297-1304.e2.	0.8	45
83	Transplantation of Mesenchymal Cells Rejuvenated by the Overexpression of Telomerase and Myocardin Promotes Revascularization and Tissue Repair in a Murine Model of Hindlimb Ischemia. Circulation Research, 2013, 113, 902-914.	4.5	88
84	Building solutions for cardiovascular disease in women. Texas Heart Institute Journal, 2013, 40, 285-7.	0.3	2
85	Effects of Myocardial Infarction on the Distribution and Transport of Nutrients and Oxygen in Porcine Myocardium. Journal of Biomechanical Engineering, 2012, 134, 101005.	1.3	12
86	Effect of Transendocardial Delivery of Autologous Bone Marrow Mononuclear Cells on Functional Capacity, Left Ventricular Function, and Perfusion in Chronic Heart Failure. JAMA - Journal of the American Medical Association, 2012, 307, 1717-26.	7.4	424
87	Effect of the Use and Timing of Bone Marrow Mononuclear Cell Delivery on Left Ventricular Function After Acute Myocardial Infarction. JAMA - Journal of the American Medical Association, 2012, 308, 2380-9.	7.4	357
88	Mechanical changes in the rat right ventricle with decellularization. Journal of Biomechanics, 2012, 45, 842-849.	2.1	50
89	Developing mechanistic insights into cardiovascular cell therapy: Cardiovascular Cell Therapy Research Network Biorepository Core Laboratory rationale. American Heart Journal, 2011, 162, 973-980.	2.7	17
90	Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists. Biology of Sex Differences, 2011, 2, 14.	4.1	45

#	Article	IF	CITATIONS
91	Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annual Review of Biomedical Engineering, 2011, 13, 27-53.	12.3	877
92	Effect of Intracoronary Delivery of Autologous Bone Marrow Mononuclear Cells 2 to 3 Weeks Following Acute Myocardial Infarction on Left Ventricular Function. JAMA - Journal of the American Medical Association, 2011, 306, 2110.	7.4	377
93	Cell Therapy—A 21st Century Hope for Treating Cardiovascular Disease—A Five-year Retrospective and Predictive View. The American Heart Hospital Journal, 2011, 9, 24.	0.2	2
94	Intramyocardial injection of autologous bone marrow mononuclear cells for patients with chronic ischemic heart disease and left ventricular dysfunction (First Mononuclear Cells injected in the US) Tj ETQq0 0 0	rg B1 7/Ovei	rlo∉a 10 Tf 50
95	LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Texas Heart Institute Journal, 2010, 37, 412-20.	0.3	50
96	From stem cells and cadaveric matrix to engineered organs. Current Opinion in Biotechnology, 2009, 20, 598-605.	6.6	53
97	Rationale and design for TIME: A phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. American Heart Journal, 2009, 158, 356-363.	2.7	74
98	Cardiovascular Translational Medicine (IX) The Basics of Cell Therapy to Treat Cardiovascular Disease: One Cell Does Not Fit All. Revista Espanola De Cardiologia (English Ed), 2009, 62, 1032-1044.	0.6	5
99	Cells for the treatment, prevention, and cure of cardiovascular disease. Texas Heart Institute Journal, 2009, 36, 148-9.	0.3	1
100	Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine, 2008, 14, 213-221.	30.7	2,385
101	The Real Estate of Myoblast Cardiac Transplantation: Negative Remodeling Is Associated With Location. Journal of Heart and Lung Transplantation, 2008, 27, 116-123.	0.6	21
102	Atherosclerosis as a disease of failed endogenous repair. Frontiers in Bioscience - Landmark, 2008, Volume, 3621.	3.0	33
103	Cell-Based Repair for Cardiovascular Regeneration and Neovascularization: What, Why, How, and Where Are We Going in the Next 5–10 Years?. , 2008, , 812-851.		0
104	Sex-Dependent Attenuation of Plaque Growth After Treatment With Bone Marrow Mononuclear Cells. Circulation Research, 2007, 101, 1319-1327.	4.5	45
105	An In Vitro System to Evaluate the Effects of Ischemia on Survival of Cells Used for Cell Therapy. Annals of Biomedical Engineering, 2007, 35, 1414-1424.	2.5	23
106	Cell therapy for left ventricular remodeling. Current Heart Failure Reports, 2007, 4, 3-10.	3.3	11
107	Cardiac Cell Transplantation. , 2007, , 259-274.		0
108	From cardiac repair to cardiac regeneration – ready to translate?. Expert Opinion on Biological Therapy, 2006, 6, 867-878.	3.1	13

#	Article	IF	CITATIONS
109	Circulating endothelial progenitor cells predict coronary artery disease severity. American Heart Journal, 2006, 152, 190-195.	2.7	165
110	Systolic Contraction Within Aneurysmal Rabbit Myocardium Following Transplantation of Autologous Skeletal Myoblasts. Journal of Surgical Research, 2006, 135, 202-208.	1.6	8
111	Robotic minimally invasive cell transplantation for heart failure. Journal of Thoracic and Cardiovascular Surgery, 2006, 132, 170-173.	0.8	14
112	Cell Therapy: A 21 st-Century Hope for Treating Cardiovascular Disease?What Do the Next 5 Years Hold?. The American Heart Hospital Journal, 2006, 4, 219-221.	0.2	0
113	Functional assessment of myoblast transplantation for cardiac repair with magnetic resonance imaging. European Journal of Heart Failure, 2005, 7, 435-443.	7.1	31
114	Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1620-H1626.	3.2	139
115	Cell Therapy for Heart Failure—Muscle, Bone Marrow, Blood, and Cardiac-Derived Stem Cells. Seminars in Thoracic and Cardiovascular Surgery, 2005, 17, 348-360.	0.6	26
116	Intracardiac transplantation of a mixed population of bone marrow cells improves both regional systolic contractility and diastolic relaxation. Journal of Heart and Lung Transplantation, 2005, 24, 205-214.	0.6	25
117	Autologous Skeletal Myoblast Transplantation Improved Hemodynamics and Left Ventricular Function in Chronic Heart Failure Dogs. Journal of Heart and Lung Transplantation, 2005, 24, 1940-1949.	0.6	63
118	Transplantation of skeletal myoblasts for cardiac repair. Journal of Heart and Lung Transplantation, 2004, 23, 1217-1227.	0.6	14
119	Video-assisted thoracoscopic transplantation of myoblasts into the heart. Annals of Thoracic Surgery, 2004, 78, 303-307.	1.3	15
120	Cell-based myocardial repair: How should we proceed?. International Journal of Cardiology, 2004, 95, S8-S12.	1.7	41
121	Comparison of Intracardiac Cell Transplantation: Autologous Skeletal Myoblasts Versus Bone Marrow Cells. Circulation, 2003, 108, 2641I–271.	1.6	69
122	Aging, Progenitor Cell Exhaustion, and Atherosclerosis. Circulation, 2003, 108, 457-463.	1.6	657
123	Improved Efficacy of Stem Cell Labeling for Magnetic Resonance Imaging Studies by the Use of Cationic Liposomes. Cell Transplantation, 2003, 12, 743-756.	2.5	112
124	Endoventricular Transplantation of Allogenic Skeletal Myoblasts in a Porcine Model of Myocardial Infarction. Journal of Endovascular Therapy, 2002, 9, 313-319.	1.5	36
125	Cardiac Chimerism as a Mechanism for Self-Repair. Circulation, 2002, 106, 2-4.	1.6	110
126	Is <i>in Vivo</i> Remodeling Necessary or Sufficient for Cellular Repair of the Heart?. Annals of the New York Academy of Sciences, 2002, 961, 315-318.	3.8	1

#	Article	IF	CITATIONS
127	Endoventricular Transplantation of Allogenic Skeletal Myoblasts in a Porcine Model of Myocardial Infarction. Journal of Endovascular Therapy, 2002, 9, 313-319.	1.5	21
128	Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease and heart failure. , 2001, 2, 208.		37
129	Comparison of Benefits on Myocardial Performance of Cellular Cardiomyoplasty with Skeletal Myoblasts and Fibroblasts. Cell Transplantation, 2000, 9, 359-368.	2.5	171
130	Fiber type-specific differential expression of angiogenic factors in response to chronic hindlimb ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H932-H938.	3.2	55
131	Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. Journal of Heart and Lung Transplantation, 1999, 18, 1173-1180.	0.6	116
132	Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Annals of Thoracic Surgery, 1999, 67, 124-129.	1.3	114
133	Cellular Cardiomyoplasty Improves Diastolic Properties of Injured Heart. Journal of Surgical Research, 1999, 85, 234-242.	1.6	77
134	Title is missing!. Molecular and Cellular Biochemistry, 1998, 180, 95-103.	3.1	11
135	Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nature Medicine, 1998, 4, 929-933.	30.7	1,079