Bruce H Vaughn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719616/publications.pdf

Version: 2024-02-01

47 4,532 29 45 g-index
67 67 67 67 67 6747

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate & amp;lt;i>í _{4 amp;lt;sub>4 and CH₄ a case study with model LMDz-SACS. Geoscientific Model Development, 2022, 15, 4831-4851.}	-<	;/sub&g <mark>t;</mark>)
2	Continuous-Flow Analysis of \hat{l} 170, \hat{l} 180, and \hat{l} 0 of H2O on an Ice Core from the South Pole. Frontiers in Earth Science, 2021, 9, .	1.8	18
3	A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Scientific Data, 2021, 8, 141.	5. 3	28
4	Reconstruction of Temperature, Accumulation Rate, and Layer Thinning From an Ice Core at South Pole, Using a Statistical Inverse Method. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033300.	3.3	6
5	Improved Constraints on Global Methane Emissions and Sinks Using <i>î'</i> ¹³ C H ₄ . Global Biogeochemical Cycles, 2021, 35, e2021GB007000.	4.9	50
6	An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments. Atmospheric Measurement Techniques, 2021, 14, 7045-7067.	3.1	3
7	The Soil Water Isotope Storage System (SWISS): An integrated soil water vapor sampling and multiport storage system for stable isotope geochemistry. Rapid Communications in Mass Spectrometry, 2020, 34, e8783.	1.5	5
8	Investigating large methane enhancements in the U.S. San Juan Basin. Elementa, 2020, 8, .	3.2	8
9	High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland. Climate of the Past, 2020, 16, 1369-1386.	3.4	8
10	An improved estimate for the ¹³C and <i>l'</i>¹⁸O signatures of carbon monoxide produced from atmospheric oxidation of volatile organic compounds. Atmospheric Chemistry and Physics 2019, 19, 8547-8562	4.9	6
11	Chemistry and Physics, 2019, 19, 8547-8562. <i>î </i> ¹⁸ O–temperature relationship in high-resolution stable water isotopes from east Greenland. Climate of the Past, 2019, 15, 893-912.	3.4	10
12	Enhanced North American carbon uptake associated with El Niño. Science Advances, 2019, 5, eaaw0076.	10.3	45
13	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	4.9	353
14	Evidence of Isotopic Fractionation During Vapor Exchange Between the Atmosphere and the Snow Surface in Greenland. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2932-2945.	3.3	30
15	Interlaboratory comparison of <i>f`</i> ¹³ C and <i>f`</i> D measurements of atmospheric CH ₄ for combined use of data sets from different	3.1	31
16	The CarbonTracker Data Assimilation System for CO ₂ and <i> </i> >3C (CTDAS-C13 v1.0): retrieving information onÂland–atmosphere exchange processes. Geoscientific Model Development, 2018, 11, 283-304.	3.6	6
17	Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nature Geoscience, 2018, 11, 744-748.	12.9	139
18	Does vapor pressure deficit drive the seasonality of δ13 C of the net landâ€atmosphere CO 2 exchange across the United States?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1969-1987.	3.0	3

#	Article	IF	Citations
19	Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores. Atmospheric Measurement Techniques, 2017, 10, 617-632.	3.1	37
20	Compiled records of carbon isotopes in atmospheric CO ₂ for historical simulations in CMIP6. Geoscientific Model Development, 2017, 10, 4405-4417.	3.6	154
21	Carbon monoxide isotopic measurements in Indianapolis constrain urban source isotopic signatures and support mobile fossil fuel emissions as the dominant wintertime CO source. Elementa, 2017, 5, .	3.2	13
22	Envisioning and Sustaining Science at Summit Station, Greenland. Eos, 2017, , .	0.1	0
23	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	4.9	317
24	Upward revision of global fossil fuel methane emissions based on isotope database. Nature, 2016, 538, 88-91.	27.8	400
25	Using <i>l´</i> ¹³ C-CH _{4 and <i>l´</i>D-CH₄ to constrain Arctic methane emissions. Atmospheric Chemistry and Physics. 2016. 16. 14891-14908.}	<td>sub&g</td>	sub&g
26	A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³ CH ₄ . Science, 2016, 352, 80-84.	12.6	336
27	Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612.	4.9	108
28	Ecological processes dominate the ¹³ C land disequilibrium in a Rocky Mountain subalpine forest. Global Biogeochemical Cycles, 2014, 28, 352-370.	4.9	27
29	Background variations of atmospheric CO ₂ and carbonâ€stable isotopes at Waliguan and Shangdianzi stations in China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5602-5612.	3.3	31
30	Core handling and processing for the WAIS Divide ice-core project. Annals of Glaciology, 2014, 55, 15-26.	1.4	34
31	Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 2013, 500, 440-444.	27.8	276
32	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
33	Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 2013, 6, 372-375.	12.9	140
34	No inter-hemispheric δ13CH4 trend observed. Nature, 2012, 486, E3-E4.	27.8	60
35	Interpreting methane variations in the past two decades using measurements of CH ₄ mixing ratio and isotopic composition. Atmospheric Chemistry and Physics, 2011, 11, 9141-9153.	4.9	95
36	Global Network Measurements of Atmospheric Trace Gas Isotopes., 2010,, 3-31.		9

#	Article	IF	CITATIONS
37	Moisture source temperatures and precipitation <i>δ</i> ¹⁸ 0â€temperature relationships across the United States. Water Resources Research, 2010, 46, .	4.2	45
38	Monthly precipitation isoscapes ($\langle i \rangle \hat{i}' \langle i \rangle \langle sup \rangle 18 \langle sup \rangle 0$) of the United States: Connections with surface temperatures, moisture source conditions, and air mass trajectories. Journal of Geophysical Research, 2010, 115, .	3.3	63
39	Demonstration of highâ€precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelengthâ€scanned cavity ringâ€down spectroscopy (WSâ€CRDS) technology. Rapid Communications in Mass Spectrometry, 2009, 23, 2534-2542.	1.5	273
40	High-precision CO_2 isotopologue spectrometer with a difference-frequency-generation laser source. Optics Letters, 2009, 34, 172.	3.3	28
41	Isoscapes to Address Largeâ€Scale Earth Science Challenges. Eos, 2009, 90, 109-110.	0.1	45
42	Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO ₂ in forest air. Atmospheric Chemistry and Physics, 2008, 8, 5263-5277.	4.9	40
43	The 8.2ka event from Greenland ice cores. Quaternary Science Reviews, 2007, 26, 70-81.	3.0	386
44	A Stable Isotopic Investigation of a Polar Desert Hydrologic System, McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 2006, 38, 60-71.	1.1	61
45	Stable isotopes and electrical conductivity as keys to understanding water pathways and storage in South Cascade Glacier, Washington, USA. Annals of Glaciology, 2005, 40, 107-112.	1.4	9
46	Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. Hydrological Processes, 2003, 17, 115-130.	2.6	74
47	Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 2003, 17, 1691-1710.	2.6	97