
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7196105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sociodemographic determinants of intraurban variations in COVID-19 incidence: the case of Barcelona. Journal of Epidemiology and Community Health, 2022, 76, 1-7.	3.7	33
2	Deconvoluting the Directed Evolution Pathway of Engineered Acyltransferase LovD. ChemCatChem, 2022, 14, e202101349.	3.7	7
3	Selective Coimmobilization of His-Tagged Enzymes on Yttrium-Stabilized Zirconia-Based Membranes for Continuous Asymmetric Bioreductions. ACS Applied Materials & amp; Interfaces, 2022, 14, 4285-4296.	8.0	11
4	Cell–enzyme tandem systems for sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100600.	5.9	2
5	Cellâ€Free Biosynthesis of ωâ€Hydroxy Acids Boosted by a Synergistic Combination of Alcohol Dehydrogenases. ChemSusChem, 2022, 15, .	6.8	8
6	Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry, 2021, 60, 991-998.	2.5	10
7	Mechanistic Insights into the Light-Driven Catalysis of an Immobilized Lipase on Plasmonic Nanomaterials. ACS Catalysis, 2021, 11, 414-423.	11.2	21
8	One-pot biotransformation of glycerol into serinol catalysed by biocatalytic composites made of whole cells and immobilised enzymes. Green Chemistry, 2021, 23, 1140-1146.	9.0	10
9	Approaches for the enzymatic synthesis of alkyl hydroxycinnamates and applications thereof. Applied Microbiology and Biotechnology, 2021, 105, 3901-3917.	3.6	6
10	Immobilization Screening and Characterization of an Alcohol Dehydrogenase and its Application to the Multi-Enzymatic Selective Oxidation of 1,-Omega-Diols. Frontiers in Catalysis, 2021, 1, .	3.9	19
11	Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of Î ² -Galactosidase. Molecules, 2021, 26, 4152.	3.8	5
12	Assembly of Nanoâ€Biocatalyst for the Tandem Hydrolysis and Reduction of pâ€Nitrophenol Esters. Particle and Particle Systems Characterization, 2021, 38, 2100136.	2.3	3
13	Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Nano Letters, 2021, 21, 7213-7220.	9.1	34
14	Solid-Phase Assembly of Multienzyme Systems into Artificial Cellulosomes. Bioconjugate Chemistry, 2021, 32, 1966-1972.	3.6	12
15	Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. International Journal of Biological Macromolecules, 2021, 191, 79-91.	7.5	30
16	Interfacial activity of modified dextran polysaccharide to produce enzyme-responsive oil-in-water nanoemulsions. Chemical Communications, 2021, 57, 4540-4543.	4.1	2
17	Self-sufficient asymmetric reduction of Î ² -ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catalysis Science and Technology, 2021, 11, 3217-3230.	4.1	18
18	Functionalization of Porous Cellulose with Glyoxyl Groups as a Carrier for Enzyme Immobilization and Stabilization. Biomacromolecules, 2021, 22, 927-937.	5.4	16

#	Article	IF	CITATIONS
19	Intraparticle Kinetics Unveil Crowding and Enzyme Distribution Effects on the Performance of Cofactor-Dependent Heterogeneous Biocatalysts. ACS Catalysis, 2021, 11, 15051-15067.	11.2	27
20	Metal substrate catalysis in the confined space for platinum drug delivery. Chemical Science, 2021, 13, 59-67.	7.4	5
21	Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme and Microbial Technology, 2020, 133, 109461.	3.2	49
22	Stabilization of ω-transaminase from Pseudomonas fluorescens by immobilization techniques. International Journal of Biological Macromolecules, 2020, 164, 4318-4328.	7.5	14
23	Selective oxidation of alkyl and aryl glyceryl monoethers catalysed by an engineered and immobilised glycerol dehydrogenase. Chemical Science, 2020, 11, 12009-12020.	7.4	9
24	Design of the Enzyme–Carrier Interface to Overcome the O ₂ and NADH Mass Transfer Limitations of an Immobilized Flavin Oxidase. ACS Applied Materials & Interfaces, 2020, 12, 56027-56038.	8.0	23
25	Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels. ACS Synthetic Biology, 2020, 9, 2971-2978.	3.8	6
26	Chitosan-based CLEAs from Aspergillus niger type A feruloyl esterase: high-productivity biocatalyst for alkyl ferulate synthesis. Applied Microbiology and Biotechnology, 2020, 104, 10033-10045.	3.6	13
27	DESign of Sustainable One-Pot Chemoenzymatic Organic Transformations in Deep Eutectic Solvents for the Synthesis of 1,2-Disubstituted Aromatic Olefins. Frontiers in Chemistry, 2020, 8, 139.	3.6	23
28	Coâ€immobilization and Colocalization of Multiâ€Enzyme Systems for the Cellâ€Free Biosynthesis of Aminoalcohols. ChemCatChem, 2020, 12, 3030-3041.	3.7	29
29	Characterization and evaluation of immobilized enzymes for applications in flow reactors. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100349.	5.9	61
30	Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. Journal of Biotechnology, 2020, 316, 6-16.	3.8	18
31	The Science of Enzyme Immobilization. Methods in Molecular Biology, 2020, 2100, 1-26.	0.9	35
32	Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials. Methods in Molecular Biology, 2020, 2100, 297-308.	0.9	8
33	One-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Immobilized "Native Enzymes― Methods in Molecular Biology, 2020, 2100, 83-92.	0.9	3
34	Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 93-107.	0.9	11
35	Immobilization of Enzymes on Supports Activated with Clutaraldehyde: A Very Simple Immobilization Protocol. Methods in Molecular Biology, 2020, 2100, 119-127.	0.9	7
36	Manufacturing of Protein-Based Biomaterials Coupling Cell-Free Protein Synthesis with Protein Immobilization. Methods in Molecular Biology, 2020, 2100, 335-343.	0.9	2

#	Article	IF	CITATIONS
37	Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers. Methods in Molecular Biology, 2020, 2100, 129-141.	0.9	2
38	Selective Immobilization of Fluorescent Proteins for the Fabrication of Photoactive Materials. Molecules, 2019, 24, 2775.	3.8	6
39	Deciphering the Effect of Microbead Size Distribution on the Kinetics of Heterogeneous Biocatalysts through Single-Particle Analysis Based on Fluorescence Microscopy. Catalysts, 2019, 9, 896.	3.5	8
40	Enhancing PLP-Binding Capacity of Class-III ω-Transaminase by Single Residue Substitution. Frontiers in Bioengineering and Biotechnology, 2019, 7, 282.	4.1	16
41	Functional Characterization and Structural Analysis of NADH Oxidase Mutants from Thermus thermophilus HB27: Role of Residues 166, 174, and 194 in the Catalytic Properties and Thermostability. Microorganisms, 2019, 7, 515.	3.6	2
42	The Radiopharmaceutical Chemistry of Nitrogen-13 and Oxygen-15. , 2019, , 237-254.		1
43	Biocatalytic Proteinâ€Based Materials for Integration into Energy Devices. ChemBioChem, 2019, 20, 1977-1985.	2.6	11
44	On-pot and cell-free biocatalysis using coimmobilized enzymes on advanced materials. Methods in Enzymology, 2019, 617, 385-411.	1.0	9
45	Advances and opportunities for the design of self-sufficient and spatially organized cell-free biocatalytic systems. Current Opinion in Chemical Biology, 2019, 49, 97-104.	6.1	65
46	Expanding One-Pot Cell-Free Protein Synthesis and Immobilization for On-Demand Manufacturing of Biomaterials. ACS Synthetic Biology, 2018, 7, 875-884.	3.8	38
47	Innentitelbild: Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins (Angew. Chem. 12/2018). Angewandte Chemie, 2018, 130, 3032-3032.	2.0	1
48	Oneâ€ s tep Synthesis of αâ€Keto Acids from Racemic Amino Acids by A Versatile Immobilized Multienzyme Cellâ€free System. ChemCatChem, 2018, 10, 3002-3011.	3.7	21
49	Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent Cinacalcet Employing Transaminases and Ketoreductases. Advanced Synthesis and Catalysis, 2018, 360, 2157-2165.	4.3	23
50	Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2â€2- N -deoxyribosyltransferase from Lactobacillus animalis. Journal of Biotechnology, 2018, 270, 39-43.	3.8	12
51	Engineering Erg10 Thiolase from <i>Saccharomyces cerevisiae</i> as a Synthetic Toolkit for the Production of Branched-Chain Alcohols. Biochemistry, 2018, 57, 1338-1348.	2.5	9
52	In-flow protein immobilization monitored by magnetic resonance imaging. New Biotechnology, 2018, 47, 25-30.	4.4	5
53	Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins. Angewandte Chemie - International Edition, 2018, 57, 3143-3147.	13.8	68
54	Coupling Enzymes and Inorganic Piezoelectric Materials for Electricity Production from Renewable Fuels. ACS Applied Energy Materials, 2018, 1, 2032-2040.	5.1	6

#	Article	IF	CITATIONS
55	Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis, 2018, 449, 106-113.	2.0	8
56	Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins. Angewandte Chemie, 2018, 130, 3197-3201.	2.0	25
57	Wiring step-wise reactions with immobilized multi-enzyme systems. Biocatalysis and Biotransformation, 2018, 36, 184-194.	2.0	40
58	Singleâ€Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem, 2018, 10, 654-665.	3.7	20
59	Sustainable and Continuous Synthesis of Enantiopure <scp>l</scp> â€Amino Acids by Using a Versatile Immobilised Multienzyme System. ChemBioChem, 2018, 19, 395-403.	2.6	25
60	Biocatalysis in radiochemistry: Enzymatic incorporation of <scp>PET</scp> radionuclides into molecules of biomedical interest. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 332-354.	1.0	7
61	Front Cover Picture: Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent Cinacalcet Employing Transaminases and Ketoreductases (Adv. Synth. Catal. 11/2018). Advanced Synthesis and Catalysis, 2018, 360, 2061-2061.	4.3	0
62	Imidazoleâ€Grafted Nanogels for the Fabrication of Organic–Inorganic Protein Hybrids. Advanced Functional Materials, 2018, 28, 1803115.	14.9	20
63	Self-Sufficient Flow-Biocatalysis by Coimmobilization of Pyridoxal 5â€2-Phosphate and ï‰-Transaminases onto Porous Carriers. ACS Sustainable Chemistry and Engineering, 2018, 6, 13151-13159.	6.7	80
64	Structural, kinetic and operational characterization of an immobilized l -aminoacid dehydrogenase. Process Biochemistry, 2017, 57, 80-86.	3.7	11
65	Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. Journal of Materials Chemistry B, 2017, 5, 4478-4486.	5.8	55
66	Riboflavin as a bioorthogonal photocatalyst for the activation of a Pt ^{IV} prodrug. Chemical Science, 2017, 8, 4619-4625.	7.4	63
67	Biosynthesis of an antiviral compound using a stabilized phosphopentomutase by multipoint covalent immobilization. Journal of Biotechnology, 2017, 249, 34-41.	3.8	10
68	Coâ€immobilized Phosphorylated Cofactors and Enzymes as Selfâ€Sufficient Heterogeneous Biocatalysts for Chemical Processes. Angewandte Chemie, 2017, 129, 789-793.	2.0	16
69	Coâ€immobilized Phosphorylated Cofactors and Enzymes as Self‣ufficient Heterogeneous Biocatalysts for Chemical Processes. Angewandte Chemie - International Edition, 2017, 56, 771-775.	13.8	159
70	Heterogeneous Systems Biocatalysis: The Path to the Fabrication of Self‣ufficient Artificial Metabolic Cells. Chemistry - A European Journal, 2017, 23, 17841-17849.	3.3	40
71	Asymmetric Reduction of Prochiral Ketones by Using Self‣ufficient Heterogeneous Biocatalysts Based on NADPHâ€Đependent Ketoreductases. Chemistry - A European Journal, 2017, 23, 16843-16852.	3.3	61
72	Effect of high salt concentrations on the stability of immobilized lipases: Dramatic deleterious effects of phosphate anions. Process Biochemistry, 2017, 62, 128-134.	3.7	50

#	Article	IF	CITATIONS
73	Frontispiece: Heterogeneous Systems Biocatalysis: The Path to the Fabrication of Selfâ€Sufficient Artificial Metabolic Cells. Chemistry - A European Journal, 2017, 23, .	3.3	0
74	Cross-linked enzyme aggregates (CLEA) in enzyme improvement $\hat{a} \in \hat{~}$ a review. Biocatalysis, 2016, 1, .	2.3	68
75	Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification. Food Chemistry, 2016, 208, 252-257.	8.2	18
76	Hydrolysis and oxidation of racemic esters into prochiral ketones catalyzed by a consortium of immobilized enzymes. Biochemical Engineering Journal, 2016, 112, 136-142.	3.6	8
77	Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics. Soft Matter, 2016, 12, 8718-8725.	2.7	7
78	Efficient Enzymatic Preparation of ¹³ N‣abelled Amino Acids: Towards Multipurpose Synthetic Systems. Chemistry - A European Journal, 2016, 22, 13619-13626.	3.3	16
79	A roadmap for biocatalysis – functional and spatial orchestration of enzyme cascades. Microbial Biotechnology, 2016, 9, 601-609.	4.2	115
80	Fabrication of heterogeneous biocatalyst tethering artificial prosthetic groups to obtain omega-3-fatty acids by selective hydrolysis of fish oils. RSC Advances, 2016, 6, 97659-97663.	3.6	1
81	Enhanced stability of l -lactate dehydrogenase through immobilization engineering. Process Biochemistry, 2016, 51, 1248-1255.	3.7	20
82	Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 32-39.	1.8	20
83	Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins. Journal of Physical Chemistry B, 2016, 120, 485-491.	2.6	16
84	Immobilizing Systems Biocatalysis for the Selective Oxidation of Glycerol Coupled to Inâ€Situ Cofactor Recycling and Hydrogen Peroxide Elimination. ChemCatChem, 2015, 7, 1884-1884.	3.7	0
85	Selective biomineralization of Co ₃ (PO ₄) ₂ -sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chemical Communications, 2015, 51, 8753-8756.	4.1	59
86	Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst. Catalysis Science and Technology, 2015, 5, 2705-2713.	4.1	24
87	Optimizing the biological activity of Fab fragments by controlling their molecular orientation and spatial distribution across porous hydrogels. Process Biochemistry, 2015, 50, 1565-1571.	3.7	4
88	Immobilizing Systems Biocatalysis for the Selective Oxidation of Glycerol Coupled to Inâ€Situ Cofactor Recycling and Hydrogen Peroxide Elimination. ChemCatChem, 2015, 7, 1939-1947.	3.7	23
89	Immobilization of Proteins on Highly Activated Glyoxyl Supports: Dramatic Increase of the Enzyme Stability <i>via</i> Multipoint Immobilization on Pre-existing Carriers. Current Organic Chemistry, 2015, 19, 1719-1731.	1.6	54
90	Immobilization of Proteins on Glyoxyl Activated Supports: Dramatic Stabilization of Enzymes by Multipoint Covalent Attachment on Pre-Existing Supports. Current Organic Chemistry, 2015, 19, 1-1.	1.6	28

#	Article	IF	CITATIONS
91	Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. Bioresource Technology, 2014, 170, 445-453.	9.6	47
92	Carrier-Free Immobilization of Lipase from <i>Candida rugosa</i> with Polyethyleneimines by Carboxyl-Activated Cross-Linking. Biomacromolecules, 2014, 15, 1896-1903.	5.4	54
93	Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chemistry, 2014, 16, 303-311.	9.0	66
94	Optical Control of Enzyme Enantioselectivity in Solid Phase. ACS Catalysis, 2014, 4, 1004-1009.	11.2	22
95	Stabilization of Enzymes by Multipoint Covalent Immobilization on Supports Activated with Glyoxyl Groups. Methods in Molecular Biology, 2013, 1051, 59-71.	0.9	36
96	Production of Hesperetin Using a Covalently Multipoint Immobilized Diglycosidase from <i>Acremonium</i> sp. DSM24697. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 410-417.	1.0	9
97	Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus. Applied and Environmental Microbiology, 2013, 79, 1555-1562.	3.1	12
98	Clutaraldehyde-Mediated Protein Immobilization. Methods in Molecular Biology, 2013, 1051, 33-41.	0.9	27
99	Altering the Interfacial Activation Mechanism of a Lipase by Solid-Phase Selective Chemical Modification. Biochemistry, 2012, 51, 7028-7036.	2.5	21
100	Draft Genome of Omphalotus olearius Provides a Predictive Framework for Sesquiterpenoid Natural Product Biosynthesis in Basidiomycota. Chemistry and Biology, 2012, 19, 772-783.	6.0	150
101	Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Process Biochemistry, 2012, 47, 2538-2541.	3.7	26
102	Directed, Strong, and Reversible Immobilization of Proteins Tagged with a Î ² -Trefoil Lectin Domain: A Simple Method to Immobilize Biomolecules on Plain Agarose Matrixes. Bioconjugate Chemistry, 2012, 23, 565-573.	3.6	20
103	Oriented covalent immobilization of antibodies onto heterofunctional agarose supports: A highly efficient immuno-affinity chromatography platform. Journal of Chromatography A, 2012, 1262, 56-63.	3.7	28
104	Rational Coâ€Immobilization of Biâ€Enzyme Cascades on Porous Supports and their Applications in Bioâ€Redox Reactions with Inâ€Situ Recycling of Soluble Cofactors. ChemCatChem, 2012, 4, 1279-1288.	3.7	123
105	Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresource Technology, 2012, 103, 343-350.	9.6	40
106	Glyoxyl-Disulfide Agarose: A Tailor-Made Support for Site-Directed Rigidification of Proteins. Biomacromolecules, 2011, 12, 1800-1809.	5.4	41
107	Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. Journal of Biotechnology, 2011, 155, 412-420.	3.8	61
108	Optimized compatible set of BioBrickâ,,¢ vectors for metabolic pathway engineering. Applied Microbiology and Biotechnology, 2011, 92, 1275-1286.	3.6	56

#	Article	IF	CITATIONS
109	New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnology, 2011, 11, 101.	3.3	45
110	Reactivation of a thermostable lipase by solid phase unfolding/refolding. Enzyme and Microbial Technology, 2011, 49, 388-394.	3.2	14
111	Sesquiterpene Synthases Cop4 and Cop6 from <i>Coprinus cinereus</i> : Catalytic Promiscuity and Cyclization of Farnesyl Pyrophosphate Geometric Isomers. ChemBioChem, 2010, 11, 1093-1106.	2.6	79
112	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
113	Multi-enzymatic synthesis. Current Opinion in Chemical Biology, 2010, 14, 174-183.	6.1	188
114	Synthesis, Properties, and Applications of Diazotrifluropropanoyl ontaining Photoactive Analogs of Farnesyl Diphosphate Containing Modified Linkages for Enhanced Stability. Chemical Biology and Drug Design, 2010, 75, 51-67.	3.2	8
115	Selectivity of Fungal Sesquiterpene Synthases: Role of the Active Site's H-1α Loop in Catalysis. Applied and Environmental Microbiology, 2010, 76, 7723-7733.	3.1	51
116	Diversity of sesquiterpene synthases in the basidiomycete <i>Coprinus cinereus</i> . Molecular Microbiology, 2009, 72, 1181-1195.	2.5	154
117	Diversity of sesquiterpene synthases in the basidiomycete <i>Coprinus cinereus</i> . Molecular Microbiology, 2009, 72, 1307-1308.	2.5	8
118	The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment. Enzyme and Microbial Technology, 2009, 45, 477-483.	3.2	46
119	A versatile photoactivatable probe designed to label the diphosphate binding site of farnesyl diphosphate utilizing enzymes. Bioorganic and Medicinal Chemistry, 2009, 17, 4797-4805.	3.0	12
120	Evaluation of Different Glutaryl Acylase Mutants to Improve the Hydolysis of Cephalosporin C in the Absence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 343-348.	4.3	23
121	Reversible Immobilization of Glutaryl Acylase on Sepabeads Coated with Polyethyleneimine. Biotechnology Progress, 2008, 20, 533-536.	2.6	23
122	Preparation of an immobilized–stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 142-145.	1.8	14
123	Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules, 2008, 9, 2553-2561.	5.4	98
124	Identification of Sesquiterpene Synthases from <i>Nostoc punctiforme</i> PCC 73102 and <i>Nostoc</i> sp. Strain PCC 7120. Journal of Bacteriology, 2008, 190, 6084-6096.	2.2	140
125	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
126	Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochemical Society Transactions, 2007, 35, 1593-1601.	3.4	188

#	Article	IF	CITATIONS
127	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38
128	Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 278-284.	3.2	66
129	Asymmetric hydrolysis of dimethyl phenylmalonate by immobilized penicillin G acylase from E. coli. Enzyme and Microbial Technology, 2007, 40, 997-1000.	3.2	9
130	Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2007, 2, 1022-1033.	12.0	269
131	Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger. Journal of Biotechnology, 2006, 121, 284-289.	3.8	78
132	Chemical Modification of Protein Surfaces To Improve Their Reversible Enzyme Immobilization on Ionic Exchangers. Biomacromolecules, 2006, 7, 3052-3058.	5.4	46
133	Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 2006, 39, 274-280.	3.2	347
134	Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 2006, 38, 960-966.	3.2	56
135	Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 2006, 39, 877-882.	3.2	361
136	Glutaraldehyde in Protein Immobilization. Methods in Biotechnology, 2006, , 57-64.	0.2	18
137	Immobilization and Stabilization of Proteins by Multipoint Covalent Attachment on Novel Amino-Epoxy-Sepabeads®. Methods in Biotechnology, 2006, , 153-162.	0.2	1
138	Improved Stabilization of Chemically Aminated Enzymes Via Multipoint Covalent Attachment on Glyoxyl Supports. Methods in Biotechnology, 2006, , 163-173.	0.2	2
139	Increasing the binding strength of proteins to PEI coated supports by immobilizing at high ionic strength. Enzyme and Microbial Technology, 2005, 37, 295-299.	3.2	37
140	Preparation of a robust biocatalyst of d-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzyme and Microbial Technology, 2005, 37, 750-756.	3.2	69
141	Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 97-101.	1.8	106
142	Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 57-61.	1.8	59
143	One-Pot Conversion of Cephalosporin C to 7-Aminocephalosporanic Acid in the Absence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2005, 347, 1804-1810.	4.3	52
144	Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Journal of Biotechnology, 2005, 116, 1-10.	3.8	114

#	Article	IF	CITATIONS
145	Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 2005, 119, 70-75.	3.8	259
146	Advantages of the Pre-Immobilization of Enzymes on Porous Supports for Their Entrapment in Solâ^'Gels. Biomacromolecules, 2005, 6, 1027-1030.	5.4	51
147	Co-aggregation of Enzymes and Polyethyleneimine:Â A Simple Method To Prepare Stable and Immobilized Derivatives of Clutaryl Acylase. Biomacromolecules, 2005, 6, 1839-1842.	5.4	96
148	Purification of a Catalase from Thermus thermophilus via IMAC Chromatography: Effect of the Support. Biotechnology Progress, 2004, 20, 1578-1582.	2.6	8
149	Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde. Journal of Biotechnology, 2004, 110, 201-207.	3.8	68
150	Optimization of an industrial biocatalyst of glutaryl acylase: Stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. Journal of Biotechnology, 2004, 111, 219-227.	3.8	48
151	Epoxy-Amino Groups:Â A New Tool for Improved Immobilization of Proteins by the Epoxy Method. Biomacromolecules, 2003, 4, 772-777.	5.4	234
152	Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions Enzyme and Microbial Technology, 2003, 33, 278-285.	3.2	50
153	Use of Physicochemical Tools to Determine the Choice of Optimal Enzyme: Stabilization of -Amino Acid Oxidase. Biotechnology Progress, 2003, 19, 784-788.	2.6	63