Derrick J Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7195122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	11.1	2,368
2	Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 2007, 447, 725-729.	27.8	994
3	Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9194-9199.	7.1	972
4	Stems Cells and the Pathways to Aging and Cancer. Cell, 2008, 132, 681-696.	28.9	806
5	Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20012-20017.	7.1	730
6	Hematopoietic Stem Cells. American Journal of Pathology, 2006, 169, 338-346.	3.8	579
7	Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5465-5470.	7.1	578
8	Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 2010, 467, 338-342.	27.8	554
9	Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15, 643-652.	11.1	406
10	Proliferation-Dependent Alterations of the DNA Methylation Landscape Underlie Hematopoietic Stem Cell Aging. Cell Stem Cell, 2013, 12, 413-425.	11.1	401
11	Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging that Is Repaired upon Entry into Cell Cycle. Cell Stem Cell, 2014, 15, 37-50.	11.1	373
12	DNA Methylation Dynamics during InÂVivo Differentiation of Blood and Skin Stem Cells. Molecular Cell, 2012, 47, 633-647.	9.7	338
13	Relative Mitochondrial Priming of Myeloblasts and Normal HSCs Determines Chemotherapeutic Success in AML. Cell, 2012, 151, 344-355.	28.9	294
14	Reprogramming Committed Murine Blood Cells to Induced Hematopoietic Stem Cells with Defined Factors. Cell, 2014, 157, 549-564.	28.9	290
15	Gene Expression Commons: An Open Platform for Absolute Gene Expression Profiling. PLoS ONE, 2012, 7, e40321.	2.5	227
16	Loss-of-function mutations in the <i>C9ORF72</i> mouse ortholog cause fatal autoimmune disease. Science Translational Medicine, 2016, 8, 347ra93.	12.4	217
17	Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature Protocols, 2013, 8, 568-582.	12.0	180
18	Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nature Biotechnology, 2016, 34, 738-745.	17.5	176

DERRICK J ROSSI

#	Article	IF	CITATIONS
19	DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.	27.8	174
20	Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2. Cancer Cell, 2016, 30, 337-348.	16.8	166
21	<i>Fgd5</i> identifies hematopoietic stem cells in the murine bone marrow. Journal of Experimental Medicine, 2014, 211, 1315-1331.	8.5	162
22	Stem cells and the aging hematopoietic system. Current Opinion in Immunology, 2010, 22, 500-506.	5.5	157
23	Hematopoietic Stem Cell Quiescence Attenuates DNA Damage Response and Permits DNA Damage Accumulation During Aging. Cell Cycle, 2007, 6, 2371-2376.	2.6	155
24	Epigenetic Control of Stem Cell Potential during Homeostasis, Aging, and Disease. Cell Stem Cell, 2015, 16, 613-625.	11.1	144
25	A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System. Cell, 2018, 174, 156-171.e16.	28.9	130
26	Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nature Communications, 2019, 10, 617.	12.8	130
27	Hematopoietic stem cell aging: Mechanism and consequence. Experimental Gerontology, 2007, 42, 385-390.	2.8	127
28	Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. Journal of Experimental Medicine, 2006, 203, 73-85.	8.5	124
29	Niche recycling through division-independent egress of hematopoietic stem cells. Journal of Experimental Medicine, 2009, 206, 2837-2850.	8.5	110
30	Transcriptome Analysis Identifies Regulators of Hematopoietic Stem and Progenitor Cells. Stem Cell Reports, 2013, 1, 266-280.	4.8	100
31	Pten, Tumorigenesis, and Stem Cell Self-Renewal. Cell, 2006, 125, 229-231.	28.9	96
32	Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR–Cas9 genome editing. Nature Biomedical Engineering, 2017, 1, 878-888.	22.5	83
33	Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress. Cell Stem Cell, 2019, 24, 944-957.e5.	11.1	78
34	Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. ELife, 2018, 7, .	6.0	77
35	Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. Journal of Biological Chemistry, 2018, 293, 7300-7314.	3.4	61
36	Epigenetic regulation of hematopoietic stem cell aging. Experimental Cell Research, 2014, 329, 192-199.	2.6	55

Derrick J Rossi

#	Article	IF	CITATIONS
37	Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis. Cell Reports, 2016, 14, 2809-2818.	6.4	55
38	Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2501-2511.	3.2	48
39	A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells. Stem Cell Reports, 2017, 8, 1563-1572.	4.8	41
40	Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nature Cell Biology, 2018, 20, 413-421.	10.3	41
41	The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood, 2015, 125, 2075-2078.	1.4	40
42	Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells. Science Advances, 2017, 3, e1701211.	10.3	38
43	Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. Nature Communications, 2019, 10, 616.	12.8	36
44	Transcription factorâ€mediated reprogramming toward hematopoietic stem cells. EMBO Journal, 2015, 34, 694-709.	7.8	32
45	Targets and genomic constraints of ectopic Dnmt3b expression. ELife, 2018, 7, .	6.0	26
46	mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell–derived hematopoietic progenitors. Journal of Clinical Investigation, 2017, 127, 2433-2437.	8.2	23
47	ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. Blood, 2017, 130, 619-624.	1.4	20
48	Genome Editing for Human Gene Therapy. Methods in Enzymology, 2014, 546, 273-295.	1.0	17
49	Growth hormone receptor signaling is dispensable for HSC function and aging. Blood, 2014, 124, 3076-3080.	1.4	17
50	Insulin-like growth factor 2 modulates murine hematopoietic stem cell maintenance through upregulation of p57. Experimental Hematology, 2016, 44, 422-433.e1.	0.4	15
51	Progress and obstacles towards generating hematopoietic stem cells from pluripotent stem cells. Current Opinion in Hematology, 2015, 22, 317-323.	2.5	12
52	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.4	5
53	DNA Damage and Aging Around the Clock. Trends in Molecular Medicine, 2016, 22, 635-637.	6.7	1