David K Cole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7195022/publications.pdf

Version: 2024-02-01

87888 102487 5,129 110 38 66 citations h-index g-index papers 114 114 114 6712 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Reliable <i>In Silico</i> Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA. Journal of Chemical Information and Modeling, 2022, 62, 577-590.	5.4	8
2	Structureâ€guided stabilization of pathogenâ€derived peptideâ€HLAâ€E complexes using nonâ€natural amino acids conserves native TCR recognition. European Journal of Immunology, 2022, 52, 618-632.	2.9	8
3	Development of a low-seroprevalence, $\hat{l}\pm v\hat{l}^26$ integrin-selective virotherapy based on human adenovirus type 10. Molecular Therapy - Oncolytics, 2022, 25, 43-56.	4.4	6
4	Unconventional modes of peptide–HLA-I presentation change the rules of TCR engagement. , 2022, 1, .		3
5	Molecular characterization of HLA class II binding to the LAGâ€3 T cell coâ€inhibitory receptor. European Journal of Immunology, 2021, 51, 331-341.	2.9	13
6	The Fiber Knob Protein of Human Adenovirus Type 49 Mediates Highly Efficient and Promiscuous Infection of Cancer Cell Lines Using a Novel Cell Entry Mechanism. Journal of Virology, 2021, 95, .	3.4	9
7	Enhanced target-specific delivery of docetaxel-loaded nanoparticles using engineered T cell receptors. Nanoscale, 2021, 13, 15010-15020.	5.6	5
8	Engineering soluble Tâ€cell receptors for therapy. FEBS Journal, 2021, 288, 6159-6173.	4.7	13
9	The Present and Future Role of Microfluidics for Protein and Peptide-Based Therapeutics and Diagnostics. Applied Sciences (Switzerland), 2021, 11, 4109.	2.5	12
10	Synthetic Peptides with Inadvertent Chemical Modifications Can Activate Potentially Autoreactive T Cells. Journal of Immunology, 2021, 207, 1009-1017.	0.8	3
11	Allosteric activation of TÂcell antigen receptor signaling by quaternary structure relaxation. Cell Reports, 2021, 36, 109375.	6.4	23
12	CD8 coreceptor-mediated focusing can reorder the agonist hierarchy of peptide ligands recognized via the T cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
13	VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Research, 2020, 48, D1057-D1062.	14.5	268
14	Molecular Rules Underpinning Enhanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy. Molecular Therapy - Oncolytics, 2020, 18, 443-456.	4.4	9
15	CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Reports, 2020, 32, 107885.	6.4	11
16	T Cells Expressing a TCR-Like Antibody Selected Against the Heteroclitic Variant of a Shared MAGE-A Epitope Do Not Recognise the Cognate Epitope. Cancers, 2020, 12, 1255.	3.7	2
17	T cell receptor interactions with human leukocyte antigen govern indirect peptide selectivity for the cancer testis antigen MAGE-A4. Journal of Biological Chemistry, 2020, 295, 11486-11494.	3.4	20
18	GPU-Accelerated Discovery of Pathogen-Derived Molecular Mimics of a T-Cell Insulin Epitope. Frontiers in Immunology, 2020, 11, 296.	4.8	10

#	Article	IF	Citations
19	Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS Journal, 2020, 287, 3777-3793.	4.7	6
20	Identification of a superagonist variant of the immunodominant Yellow fever virus epitope NS4b 214-222 by combinatorial peptide library screening. Molecular Immunology, 2020, 125, 43-50.	2.2	0
21	Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. Journal of Clinical Investigation, 2020, 130, 2673-2688.	8.2	50
22	Human leukocyte antigen (HLA) class II peptide flanking residues tune the immunogenicity of a human tumor-derived epitope. Journal of Biological Chemistry, 2019, 294, 20246-20258.	3.4	10
23	Novel TCR-based biologics: mobilising T cells to warm â€~cold' tumours. Cancer Treatment Reviews, 2019, 77, 35-43.	7.7	57
24	TCRâ€induced alteration of primary MHC peptide anchor residue. European Journal of Immunology, 2019, 49, 1052-1066.	2.9	23
25	Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions. Nature Communications, 2019, 10, 741.	12.8	46
26	Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in Immunology, 2019, 10, 319.	4.8	18
27	Real-time binding kinetic analyses of the interaction of the dietary stain orange II with dentin matrix. Journal of Dentistry, 2019, 80, 80-88.	4.1	2
28	T cell receptor alpha variable 12â€2 bias in the immunodominant response to Yellow fever virus. European Journal of Immunology, 2018, 48, 258-272.	2.9	44
29	Differential Immunodominance Hierarchy of CD8 ⁺ T-Cell Responses in HLA-B*27:05- and -B*27:02-Mediated Control of HIV-1 Infection. Journal of Virology, 2018, 92, .	3.4	14
30	Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. Journal of Clinical Investigation, 2018, 128, 1569-1580.	8.2	27
31	Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathogens, 2018, 14, e1007017.	4.7	35
32	In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility. Frontiers in Immunology, 2018, 9, 674.	4.8	26
33	Structural Mechanism Underpinning Cross-reactivity of a CD8+ T-cell Clone That Recognizes a Peptide Derived from Human Telomerase Reverse Transcriptase. Journal of Biological Chemistry, 2017, 292, 802-813.	3.4	23
34	IGF-1R associates with adverse outcomes after radical radiotherapy for prostate cancer. British Journal of Cancer, 2017, 117, 1600-1606.	6.4	35
35	Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens. Journal of Visualized Experiments, 2017, , .	0.3	4
36	Targeting the T cell receptor \hat{I}^2 -chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017, 23, 1416-1423.	30.7	196

#	Article	IF	Citations
37	Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope. Frontiers in Immunology, 2017, 8, 1503.	4.8	29
38	Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation. Frontiers in Immunology, 2017, 8, 1516.	4.8	67
39	Thermal Stability of Heterotrimeric pMHC Proteins as Determined by Circular Dichroism Spectroscopy. Bio-protocol, 2017, 7, .	0.4	4
40	Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy. Scientific Reports, 2016, 6, 18851.	3.3	79
41	T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones. Journal of Immunological Methods, 2016, 430, 43-50.	1.4	28
42	A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen. Journal of Biological Chemistry, 2016, 291, 8951-8959.	3.4	29
43	The Peptide Ligands Presented by MHC Class II Molecules. , 2016, , 209-214.		1
44	Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. Journal of Clinical Investigation, 2016, 126, 2191-2204.	8.2	113
45	Targeting T-Cell Receptor \hat{l}^2 -Constant Domain for Immunotherapy of T-Cell Malignancies. Blood, 2016, 128, 811-811.	1.4	0
46	Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers. Journal of Immunology, 2015, 195, 5827-5836.	0.8	12
47	More tricks with tetramers: a practical guide to staining T cells with peptide– <scp>MHC</scp> multimers. Immunology, 2015, 146, 11-22.	4.4	106
48	The T cell antigen receptor: the Swiss army knife of the immune system. Clinical and Experimental Immunology, 2015, 181, 1-18.	2.6	57
49	Recurrence of Melanoma Following T Cell Treatment: Continued Antigen Expression in a Tumor That Evades T Cell Recruitment. Molecular Therapy, 2015, 23, 396-406.	8.2	22
50	Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Journal of Biological Chemistry, 2015, 290, 18924-18933.	3.4	28
51	The ultimate mix and match: making sense of HLA alleles and peptide repertoires. Immunology and Cell Biology, 2015, 93, 515-516.	2.3	7
52	The promise of $\hat{I}^3\hat{I}$ T cells and the $\hat{I}^3\hat{I}$ T cell receptor for cancer immunotherapy. Cellular and Molecular Immunology, 2015, 12, 656-668.	10.5	102
53	A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology, 2015, 12, 20.	2.0	35
54	Naive CD8 ⁺ Tâ€eell precursors display structured TCR repertoires and composite antigenâ€driven selection dynamics. Immunology and Cell Biology, 2015, 93, 625-633.	2.3	48

#	Article	IF	CITATIONS
55	Structural basis for ineffective Tâ€cell responses to MHC anchor residueâ€improved "heteroclitic― peptides. European Journal of Immunology, 2015, 45, 584-591.	2.9	63
56	Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs. Journal of Immunology, 2015, 194, 463-474.	0.8	55
57	A distinct immunogenic region of glutamic acid decarboxylase 65 is naturally processed and presented by human islet cells to cytotoxic CD8 T cells. Clinical and Experimental Immunology, 2015, 179, 100-107.	2.6	13
58	Comparison of peptide–major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clinical and Experimental Immunology, 2014, 177, 47-63.	2.6	81
59	The versatility of the αβ Tâ€cell antigen receptor. Protein Science, 2014, 23, 260-272.	7.6	20
60	T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions. Journal of Biological Chemistry, 2014, 289, 628-638.	3.4	63
61	Coreceptor Scanning by the T Cell Receptor Provides a Mechanism for T Cell Tolerance. Cell, 2014, 159, 333-345.	28.9	155
62	Molecular Basis of a Dominant T Cell Response to an HIV Reverse Transcriptase 8-mer Epitope Presented by the Protective Allele HLA-B*51:01. Journal of Immunology, 2014, 192, 3428-3434.	0.8	25
63	Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood, 2013, 121, 1112-1123.	1.4	89
64	T-cell Receptor Specificity Maintained by Altered Thermodynamics. Journal of Biological Chemistry, 2013, 288, 18766-18775.	3.4	36
65	Re-Directing CD4+ T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Frontiers in Immunology, 2013, 4, 172.	4.8	58
66	Human \hat{I}^2 -Cell Killing by Autoreactive Preproinsulin-Specific CD8 T Cells Is Predominantly Granule-Mediated With the Potency Dependent Upon T-Cell Receptor Avidity. Diabetes, 2013, 62, 205-213.	0.6	53
67	Cellular-Level Versus Receptor-Level Response Threshold Hierarchies in T-Cell Activation. Frontiers in Immunology, 2013, 4, 250.	4.8	24
68	Increased peptide contacts govern high affinity binding of a modified TCR whilst maintaining a native pMHC docking mode. Frontiers in Immunology, 2013, 4, 168.	4.8	27
69	HLA-Class I Alleles Impact Susceptibility To EBV+ Classical Hodgkin Lymphoma By Altering EBV Latent Antigen-Specific CD8+ T-Cell Immune Hierarchies. Blood, 2013, 122, 630-630.	1.4	0
70	Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4+ T-cell repertoire selection. Nature Communications, 2012, 3, 665.	12.8	36
71	Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nature Immunology, 2012, 13, 283-289.	14.5	151
72	T-cell Receptor-optimized Peptide Skewing of the T-cell Repertoire Can Enhance Antigen Targeting*. Journal of Biological Chemistry, 2012, 287, 37269-37281.	3.4	42

#	Article	IF	CITATIONS
73	Differential Clade-Specific HLA-B*3501 Association with HIV-1 Disease Outcome Is Linked to Immunogenicity of a Single Gag Epitope. Journal of Virology, 2012, 86, 12643-12654.	3.4	49
74	Minimal conformational plasticity enables TCR cross-reactivity to different MHC class II heterodimers. Scientific Reports, 2012, 2, 629.	3.3	26
75	The molecular determinants of <scp>CD</scp> 8 coâ€receptor function. Immunology, 2012, 137, 139-148.	4.4	51
76	Structural and biophysical determinants of αβ T ell antigen recognition. Immunology, 2012, 135, 9-18.	4.4	130
77	TCR/pMHC Optimized Protein crystallization Screen. Journal of Immunological Methods, 2012, 382, 203-210.	1.4	29
78	Real time detection of peptide–MHC dissociation reveals that improvement of primary MHC-binding residues can have a minimal, or no, effect on stability. Molecular Immunology, 2011, 48, 728-732.	2.2	39
79	The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells. Journal of Leukocyte Biology, 2011, 90, 1089-1099.	3.3	20
80	Anti-CD8 Antibodies Can Trigger CD8+ T Cell Effector Function in the Absence of TCR Engagement and Improve Peptide–MHCI Tetramer Staining. Journal of Immunology, 2011, 187, 654-663.	0.8	34
81	Correlation of in situ mechanosensitive responses of the <i>Moraxella catarrhalis</i> adhesin UspA1 with fibronectin and receptor CEACAM1 binding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15174-15178.	7.1	28
82	MHC Class I Molecules with Superenhanced CD8 Binding Properties Bypass the Requirement for Cognate TCR Recognition and Nonspecifically Activate CTLs. Journal of Immunology, 2010, 184, 3357-3366.	0.8	26
83	Modification of MHC Anchor Residues Generates Heteroclitic Peptides That Alter TCR Binding and T Cell Recognition. Journal of Immunology, 2010, 185, 2600-2610.	0.8	111
84	Genetic and Structural Basis for Selection of a Ubiquitous T Cell Receptor Deployed in Epstein-Barr Virus Infection. PLoS Pathogens, 2010, 6, e1001198.	4.7	110
85	Germ Line-governed Recognition of a Cancer Epitope by an Immunodominant Human T-cell Receptor. Journal of Biological Chemistry, 2009, 284, 27281-27289.	3.4	151
86	Peptide-Major Histocompatibility Complex Dimensions Control Proximal Kinase-Phosphatase Balance during T Cell Activation. Journal of Biological Chemistry, 2009, 284, 26096-26105.	3.4	48
87	ELISPOT and functional T cell analyses using HLA mono-specific target cells. Journal of Immunological Methods, 2009, 350, 150-160.	1.4	2
88	T Cell Receptor Cross-reactivity Directed by Antigen-Dependent Tuning of Peptide-MHC Molecular Flexibility. Immunity, 2009, 31, 885-896.	14.3	174
89	Tricks with tetramers: how to get the most from multimeric peptide–MHC. Immunology, 2009, 126, 147-164.	4.4	162
90	P16-56 LB. Novel tetramer technology for the detection of high affinity CD8 T cells. Retrovirology, 2009, 6 , .	2.0	0

#	Article	IF	Citations
91	Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Medicine, 2008, 14, 1390-1395.	30.7	224
92	Detection of low avidity CD8+ T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. Journal of Immunological Methods, 2008, 338, 31-39.	1.4	32
93	T cell receptor engagement of peptide-major histocompatibility complex class I does not modify CD8 binding. Molecular Immunology, 2008, 45, 2700-2709.	2.2	40
94	Human TCR-Binding Affinity is Governed by MHC Class Restriction. Journal of Immunology, 2007, 178, 5727-5734.	0.8	175
95	Different T Cell Receptor Affinity Thresholds and CD8 Coreceptor Dependence Govern Cytotoxic T Lymphocyte Activation and Tetramer Binding Properties. Journal of Biological Chemistry, 2007, 282, 23799-23810.	3.4	198
96	Functional and biophysical characterization of an HLA-A*6801-restricted HIV-specific T cell receptor. European Journal of Immunology, 2007, 37, 479-486.	2.9	21
97	Computational design and crystal structure of an enhanced affinity mutant human CD8 αα coreceptor. Proteins: Structure, Function and Bioinformatics, 2007, 67, 65-74.	2.6	26
98	Peptide-Major Histocompatibility Complex Class I Tetramers with Enhanced Coreceptor Binding Properties Enable Visualization of Low Avidity Leukemia-Associated Antigen-Specific CD8+ T Cells Blood, 2007, 110, 1343-1343.	1.4	4
99	Crystal structure of HLA-A*2402 complexed with a telomerase peptide. European Journal of Immunology, 2006, 36, 170-179.	2.9	42
100	Engineering and functional evaluation of a single-chain antibody against HIV-1 external glycoprotein gp120. Clinical and Experimental Immunology, 2005, 141, 72-80.	2.6	9
101	Crystallization and preliminary X-ray structural studies of a high-affinity CD8αα co-receptor to pMHC. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 285-287.	0.7	5
102	Crystallization and preliminary crystallographic analysis of the fusion core from two new zoonotic paramyxoviruses, Nipah virus and Hendra virus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1161-1164.	2.5	18
103	Complex assembly, crystallization and preliminary X-ray crystallographic studies of MHC H-2Kdcomplexed with an HBV-core nonapeptide. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1473-1475.	2.5	28
104	Biochemical, biophysical and preliminary X-ray crystallographic analyses of the fusion core of Sendai virus F protein. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1632-1635.	2.5	1
105	SARS coronavirus induces apoptosis in Vero E6 Cells. Journal of Medical Virology, 2004, 73, 323-331.	5.0	93
106	Characterization of the Heptad Repeat Regions, HR1 and HR2, and Design of a Fusion Core Structure Model of the Spike Protein from Severe Acute Respiratory Syndrome (SARS) Coronavirusâ€. Biochemistry, 2004, 43, 14064-14071.	2.5	54
107	Basis for fusion inhibition by peptides: analysis of the heptad repeat regions of the fusion proteins from Nipah and Hendra viruses, newly emergent zoonotic paramyxoviruses. Biochemical and Biophysical Research Communications, 2004, 315, 664-670.	2.1	34
108	Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors. Biochemical and Biophysical Research Communications, 2004, 319, 283-288.	2.1	98

#	Article	IF	CITATIONS
109	Construct design, biophysical, and biochemical characterization of the fusion core from mouse hepatitis virus (a coronavirus) spike protein. Protein Expression and Purification, 2004, 38, 116-122.	1.3	6
110	CD8: adhesion molecule, co-receptor and immuno-modulator. Cellular and Molecular Immunology, 2004, 1, 81-8.	10.5	26