Andrew Baird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7194546/publications.pdf Version: 2024-02-01

ΔΝΙΟΡΕΊΝ ΒΛΙΦΟ

#	Article	IF	CITATIONS
1	844 The alpha-7 Nicotinic Acetylcholine Receptor Mediates a Uniquely Human Response to Burn Injury. Journal of Burn Care and Research, 2020, 41, S261-S261.	0.2	0
2	ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury. Science Advances, 2020, 6, eaay0518.	4.7	23
3	CHRFAM7A reduces monocyte/macrophage migration and colony formation in vitro. Inflammation Research, 2020, 69, 631-633.	1.6	13
4	TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair. FASEB Journal, 2019, 33, 6129-6139.	0.2	16
5	Open reading frame mining identifies a TLR4 binding domain in the primary sequence of ECRG4. Cellular and Molecular Life Sciences, 2019, 76, 5027-5039.	2.4	5
6	Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7932-7940.	3.3	29
7	CHRFAM7A alters binding to the neuronal alpha-7 nicotinic acetylcholine receptor. Neuroscience Letters, 2019, 690, 126-131.	1.0	16
8	Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Tollâ€like receptor 4. FASEB Journal, 2018, 32, 97-110.	0.2	74
9	Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer's disease. Fluids and Barriers of the CNS, 2018, 15, 34.	2.4	58
10	Counter regulation of ECRG4 gene expression by hypermethylation-dependent inhibition and the Sp1 transcription factor-dependent stimulation of the c2orf40 promoter. Gene, 2017, 636, 103-111.	1.0	10
11	The Response to Burn Injury in Mice With Human Hematolymphoid Systems. Annals of Surgery, 2016, 263, 199-204.	2.1	8
12	Mice engrafted with human hematopoietic stem cells support a human myeloid cell inflammatory response in vivo. Wound Repair and Regeneration, 2016, 24, 1004-1014.	1.5	14
13	Lost your nerve? Modulating the parasympathetic nervous system to treat inflammatory bowel disease. Journal of Physiology, 2016, 594, 4097-4098.	1.3	2
14	Injury, inflammation and the emergence of humanâ€specific genes. Wound Repair and Regeneration, 2016, 24, 602-606.	1.5	16
15	Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear. Scientific Reports, 2016, 6, 22663.	1.6	25
16	Up-regulation of the human-specific CHRFAM7A gene in inflammatory bowel disease. BBA Clinical, 2016, 5, 66-71.	4.1	24
17	The Orphan C2orf40 Gene is a Neuroimmune Factor in Alzheimer's Disease. JSM Alzheimer's Disease and Related Dementia, 2016, 3, .	0.0	5
18	Monitoring Neutrophil-Expressed Cell Surface Esophageal Cancer Related Gene-4 after Severe Burn Injury. Surgical Infections, 2015, 16, 669-674.	0.7	6

ANDREW BAIRD

#	Article	IF	CITATIONS
19	Understanding the rules of the road: proteomic approaches to interrogate the blood brain barrier. Frontiers in Neuroscience, 2015, 9, 70.	1.4	18
20	A Human-Specific α7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression. Molecular Medicine, 2015, 21, 323-336.	1.9	34
21	Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. Neuro-Oncology, 2015, 17, 685-696.	0.6	31
22	CHRFAM7A: a humanâ€specific α7â€nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. FASEB Journal, 2015, 29, 2292-2302.	0.2	27
23	Esophageal cancer-related gene-4 (ECRG4) interactions with the innate immunity receptor complex. Inflammation Research, 2015, 64, 107-118.	1.6	20
24	Pulmonary preconditioning, injury, and inflammation modulate expression of the candidate tumor suppressor gene <i>ECRG4</i> in lung. Experimental Lung Research, 2015, 41, 162-172.	0.5	11
25	CHRFAM7A, a human-specific and partially duplicated <i>α</i> 7-nicotinic acetylcholine receptor gene with the potential to specify a human-specific inflammatory response to injury. Journal of Leukocyte Biology, 2015, 97, 247-257.	1.5	45
26	A Mouse Model of Otitis Media Identifies HB-EGF as a Mediator of Inflammation-Induced Mucosal Proliferation. PLoS ONE, 2014, 9, e102739.	1.1	20
27	Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy. Gastrointestinal Cancer: Targets and Therapy, 2014, 2014, 131.	5.5	21
28	The candidate tumor suppressor gene Ecrg4 as a wound terminating factor in cutaneous injury. Archives of Dermatological Research, 2013, 305, 141-149.	1.1	28
29	Preclinical Models of Wound Healing: Is Man the Model? Proceedings of the Wound Healing Society Symposium. Advances in Wound Care, 2013, 2, 1-4.	2.6	59
30	Vagus nerve stimulation blocks vascular permeability following burn in both local and distal sites. Burns, 2013, 39, 68-75.	1.1	10
31	Augurin and Ecrg4-derived Neuropeptides. , 2013, , 1655-1666.		Ο
32	Ecrg4 Attenuates the Inflammatory Proliferative Response of Mucosal Epithelial Cells to Infection. PLoS ONE, 2013, 8, e61394.	1.1	33
33	Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activate macrophages. Journal of Leukocyte Biology, 2012, 91, 773-781.	1.5	30
34	Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4. Cell and Tissue Research, 2012, 348, 505-514.	1.5	32
35	Vagal Stimulation Modulates Inflammation through a Ghrelin Mediated Mechanism in Traumatic Brain Injury. Inflammation, 2012, 35, 214-220.	1.7	62
36	In vitro evidence that peptides derived from the candidate tumor suppressor gene Esophageal Cancerâ€Related Gene 4 (Ecrg4) internalize into cells through the innate immunity receptor complex. FASEB Journal, 2012, 26, 998.2.	0.2	0

Andrew Baird

#	Article	IF	CITATIONS
37	The Candidate Tumor Suppressor Gene Ecrg4 Inhibits Proliferation of the Inflammed Mucosal Epithelium. FASEB Journal, 2012, 26, 655.3.	0.2	0
38	Targeting the Choroid Plexus-CSF-Brain Nexus Using Peptides Identified by Phage Display. Methods in Molecular Biology, 2011, 686, 483-498.	0.4	9
39	Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids and Barriers of the CNS, 2011, 8, 6.	2.4	59
40	Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. Journal of Neural Transmission, 2011, 118, 115-133.	1.4	100
41	Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system. BMC Neuroscience, 2011, 12, 4.	0.8	28
42	A phage-targeting strategy for the design of spatiotemporal drug delivery from grafted matrices. Fibrogenesis and Tissue Repair, 2011, 4, 7.	3.4	7
43	Esophageal Cancer Related Gene-4 Is a Choroid Plexus-Derived Injury Response Gene: Evidence for a Biphasic Response in Early and Late Brain Injury. PLoS ONE, 2011, 6, e24609.	1.1	42
44	Efferent Vagal Nerve Stimulation Attenuates Gut Barrier Injury After Burn: Modulation of Intestinal Occludin Expression. Journal of Trauma, 2010, 68, 1349-1356.	2.3	68
45	Stimulating the Central Nervous System to Prevent Intestinal Dysfunction After Traumatic Brain Injury. Journal of Trauma, 2010, 68, 1059-1064.	2.3	65
46	Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid. Brain Research, 2010, 1359, 1-13.	1.1	11
47	The Hormone Ghrelin Prevents Traumatic Brain Injury Induced Intestinal Dysfunction. Journal of Neurotrauma, 2010, 27, 2255-2260.	1.7	50
48	Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. American Journal of Physiology - Renal Physiology, 2010, 299, G1308-G1318.	1.6	124
49	Traumatic Brain Injury and Intestinal Dysfunction: Uncovering the Neuro-Enteric Axis. Journal of Neurotrauma, 2009, 26, 1353-1359.	1.7	597
50	Targeting the gut barrier: Identification of a homing peptide sequence for delivery into the injured intestinal epithelial cell. Surgery, 2009, 146, 206-212.	1.0	25
51	The deployment of adenovirusâ€containing gene activated matrices onto severed axons after central nervous system injury leads to transgene expression in target neuronal cell bodies. Journal of Gene Medicine, 2009, 11, 679-688.	1.4	10
52	The noninvasive, quantitative, in vivo assessment of adenoviral-mediated gene delivery in skin wound biomaterials. Biomaterials, 2009, 30, 6788-6793.	5.7	14
53	Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns, 2009, 35, 811-817.	1.1	40
54	Phosphodiesterase inhibition attenuates alterations to the tight junction proteins occludin and ZO-1 in immunostimulated Caco-2 intestinal monolayers. Life Sciences, 2009, 84, 18-22.	2.0	48

ANDREW BAIRD

#	Article	IF	CITATIONS
55	BURN-INDUCED GUT BARRIER INJURY IS ATTENUATED BY PHOSPHODIESTERASE INHIBITION. Shock, 2009, 31, 416-422.	1.0	86
56	Matrix-mediated gene transfer to brain cortex and dorsal root ganglion neurones by retrograde axonal transport after dorsal column lesion. Journal of Gene Medicine, 2006, 8, 901-909.	1.4	11
57	Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route. Pharmaceutical Research, 2005, 22, 1011-1037.	1.7	122
58	Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. BioTechniques, 2004, 36, 1018-1029.	0.8	35
59	Selection of Internalizing Ligand-Display Phage Using Rolling Circle Amplification for Phage Recovery. DNA and Cell Biology, 2004, 23, 457-462.	0.9	19
60	Gene Transfer Using Targeted Filamentous Bacteriophage. , 2002, 185, 393-401.		11
61	Evolving Phage Vectors for Cell Targeted Gene Delivery. Current Pharmaceutical Biotechnology, 2002, 3, 45-57.	0.9	84
62	Enhanced phagemid particle gene transfer in camptothecin-treated carcinoma cells. Cancer Research, 2002, 62, 977-81.	0.4	37
63	Human Choroid Plexus Growth Factors: What Are the Implications for CSF Dynamics in Alzheimer's Disease?. Experimental Neurology, 2001, 167, 40-47.	2.0	100
64	Sustained Effects of Gene-Activated Matrices after CNS Injury. Molecular and Cellular Neurosciences, 2001, 17, 706-716.	1.0	83
65	Receptor-Targeted Gene Delivery Using Multivalent Phagemid Particles. Molecular Therapy, 2001, 3, 476-484.	3.7	80
66	Receptor-mediated gene transfer by phage-display vectors: applications in functional genomics and gene therapy. Drug Discovery Today, 2001, 6, 793-801.	3.2	44
67	Translocation of FGF2 to the cell surface without release into conditioned media. Journal of Cellular Physiology, 2000, 185, 260-268.	2.0	49
68	Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB Journal, 1999, 13, 727-734.	0.2	128
69	Genetic Selection of Phage Engineered for Receptor-Mediated Gene Transfer to Mammalian Cells. Biochemical and Biophysical Research Communications, 1999, 264, 921-928.	1.0	73
70	Targeting Bacteriophage to Mammalian Cell Surface Receptors for Gene Delivery. Human Gene Therapy, 1998, 9, 2393-2399.	1.4	110
71	Effects of Transforming Growth Factor $\hat{1}^21$, on Scar Production in the Injured Central Nervous System of the Rat. European Journal of Neuroscience, 1994, 6, 355-363.	1.2	293
72	Enhanced expression of transforming growth factor β1 in the rat brain after a localized cerebral injury. Brain Research, 1992, 587, 216-225.	1.1	221

#	Article	IF	CITATIONS
73	Fibroblast Growth Factor Inhibits Luteinizing Hormone-Stimulated Androgen Production by Cultured Rat Testicular Cells*. Endocrinology, 1988, 123, 2935-2941.	1.4	56