## **Yvonne M Stokes**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7194348/publications.pdf Version: 2024-02-01



YVONNE M STOKES

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dynamics of Small Particle Inertial Migration in Curved Square Ducts. SIAM Journal on Applied<br>Dynamical Systems, 2022, 21, 714-734.             | 1.6 | 5         |
| 2  | A two-dimensional asymptotic model for capillary collapse. Journal of Fluid Mechanics, 2021, 909, .                                                | 3.4 | 2         |
| 3  | Investigation of oversized channels in tubular fibre drawing. Optical Materials Express, 2021, 11, 905.                                            | 3.0 | 2         |
| 4  | Wet chemical etching of single-bore microstructured silicon dioxide fibers. Physics of Fluids, 2020, 32, 073314.                                   | 4.0 | 1         |
| 5  | Inertial focusing of non-neutrally buoyant spherical particles in curved microfluidic ducts. Journal of Fluid Mechanics, 2020, 902, .              | 3.4 | 9         |
| 6  | Particle-laden thin-film flow in helical channels with arbitrary shallow cross-sectional shape.<br>Physics of Fluids, 2019, 31, 073305.            | 4.0 | 1         |
| 7  | Effect of inertial lift on a spherical particle suspended in flow through a curved duct. Journal of<br>Fluid Mechanics, 2019, 875, 1-43.           | 3.4 | 21        |
| 8  | Coupled fluid and energy flow in fabrication of microstructured optical fibres. Journal of Fluid Mechanics, 2019, 874, 548-572.                    | 3.4 | 9         |
| 9  | Can We Fabricate That Fibre?. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, ,<br>1-13.                                        | 0.2 | Ο         |
| 10 | Fluid flow in a spiral microfluidic duct. Physics of Fluids, 2018, 30, .                                                                           | 4.0 | 10        |
| 11 | A NOTE ON NAVIER–STOKES EQUATIONS WITH NONORTHOGONAL COORDINATES. ANZIAM Journal, 2018, 59, 335-348.                                               | 0.2 | 2         |
| 12 | Pinch-off masses of very viscous fluids extruded from dies of arbitrary shape. Physics of Fluids, 2018, 30, 073103.                                | 4.0 | 1         |
| 13 | Thin-film flow in helically wound shallow channels of arbitrary cross-sectional shape. Physics of Fluids, 2017, 29, 013102.                        | 4.0 | 4         |
| 14 | Extrusion of fluid cylinders of arbitrary shape with surface tension and gravity. Journal of Fluid<br>Mechanics, 2017, 810, 127-154.               | 3.4 | 5         |
| 15 | Simple Analysis of Line Packing, Attenuation, and Rarefaction Phenomena in Water Hammer. Journal of<br>Hydraulic Engineering, 2017, 143, 06017017. | 1.5 | 0         |
| 16 | Drawing tubular fibres: experiments versus mathematical modelling. Optical Materials Express, 2016, 6,<br>166.                                     | 3.0 | 21        |
| 17 | Gravitational extension of a fluid cylinder with internal structure. Journal of Fluid Mechanics, 2016, 790, 308-338.                               | 3.4 | 10        |
| 18 | The evolution of a viscous thread pulled with a prescribed speed. Journal of Fluid Mechanics, 2016, 795, 380-408.                                  | 3.4 | 5         |

**YVONNE M STOKES** 

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Asymptotic Modelling of a Six-Hole MOF. Journal of Lightwave Technology, 2016, 34, 5651-5656.                                                                                                                                 | 4.6 | 9         |
| 20 | Elliptical pore regularisation of the inverse problem for microstructured optical fibreÂfabrication.<br>Journal of Fluid Mechanics, 2015, 778, 5-38.                                                                          | 3.4 | 20        |
| 21 | Microstructured optical fibre drawing with active channel pressurisation. Journal of Fluid Mechanics, 2015, 783, 137-165.                                                                                                     | 3.4 | 19        |
| 22 | Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature. Journal of Fluid Mechanics, 2015, 764, 76-94.                                                                                      | 3.4 | 7         |
| 23 | Behavior of a particle-laden flow in a spiral channel. Physics of Fluids, 2014, 26, 043302.                                                                                                                                   | 4.0 | 23        |
| 24 | Prematuration with Cyclic Adenosine Monophosphate Modulators Alters Cumulus Cell and Oocyte<br>Metabolism and Enhances Developmental Competence of In Vitro-Matured Mouse Oocytes1. Biology of<br>Reproduction, 2014, 91, 47. | 2.7 | 64        |
| 25 | Drawing of micro-structured fibres: circular and non-circular tubes. Journal of Fluid Mechanics, 2014, 755, 176-203.                                                                                                          | 3.4 | 31        |
| 26 | Thin-film flow in helically wound rectangular channels with small torsion. Physics of Fluids, 2013, 25, 083103.                                                                                                               | 4.0 | 6         |
| 27 | Pore Level Simulation of Miscible Injection with Gravity Domination. Energy Procedia, 2013, 37, 6885-6900.                                                                                                                    | 1.8 | 2         |
| 28 | ON THIN OR SLENDER BODIES. ANZIAM Journal, 2012, 53, 190-212.                                                                                                                                                                 | 0.2 | 4         |
| 29 | Lubrication analysis and numerical simulation of the viscous micropump with slip. International<br>Journal of Heat and Fluid Flow, 2012, 33, 22-34.                                                                           | 2.4 | 7         |
| 30 | On generalised penalty approaches for slip, free surface and related boundary conditions in viscous<br>flow simulation. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21,<br>668-702.             | 2.8 | 17        |
| 31 | Pore Scale Visualization and Simulation of Miscible Displacement Process under Gravity Domination. , 2011, , .                                                                                                                |     | 1         |
| 32 | Extensional flow at low Reynolds number with surface tension. Journal of Engineering Mathematics, 2011, 70, 321-331.                                                                                                          | 1.2 | 10        |
| 33 | Estimation of Glucose Uptake by Ovarian Follicular Cells. Annals of Biomedical Engineering, 2011, 39, 2654-2667.                                                                                                              | 2.5 | 13        |
| 34 | Follicle Structure Influences the Availability of Oxygen to the Oocyte in Antral Follicles.<br>Computational and Mathematical Methods in Medicine, 2011, 2011, 1-9.                                                           | 1.3 | 19        |
| 35 | Quantifying oxygen diffusion in paraffin oil used in oocyte and embryo culture. Molecular<br>Reproduction and Development, 2009, 76, 1178-1187.                                                                               | 2.0 | 18        |
| 36 | Mathematical Modeling of Glucose Supply Toward Successful <i>In Vitro</i> Maturation of Mammalian Oocytes. Tissue Engineering - Part A, 2008, 14, 1539-1547.                                                                  | 3.1 | 13        |

**YVONNE M STOKES** 

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Computation of Extensional Fall of Slender Viscous Drops by a One-Dimensional Eulerian Method.<br>SIAM Journal on Applied Mathematics, 2007, 67, 1166-1182.                            | 1.8 | 8         |
| 38 | Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes.<br>Reproduction, 2006, 131, 999-1006.                                                    | 2.6 | 60        |
| 39 | The role of inertia in extensional fall of a viscous drop. Journal of Fluid Mechanics, 2004, 498, 205-225.                                                                             | 3.4 | 26        |
| 40 | Determining rotational deformity in broken forearms. ANZIAM Journal, 2003, 44, 561-568.                                                                                                | 0.2 | 2         |
| 41 | Flow in Spiral Channels of Small Curvature and Torsion. Fluid Mechanics and Its Applications, 2001, , 289-296.                                                                         | 0.2 | 5         |
| 42 | Numerical design tools for thermal replication of optical-quality surfaces. Computers and Fluids, 2000, 29, 401-414.                                                                   | 2.5 | 9         |
| 43 | Extensional fall of a very viscous fluid drop. Quarterly Journal of Mechanics and Applied Mathematics, 2000, 53, 565-582.                                                              | 1.3 | 37        |
| 44 | Flowing windowpanes: a comparison of Newtonian and Maxwell fluid models. Proceedings of the<br>Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 456, 1861-1864. | 2.1 | 4         |
| 45 | Flowing windowpanes: fact or fiction?. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 2751-2756.                                      | 2.1 | 10        |
| 46 | Slow slumping of a very viscous liquid bridge. Journal of Engineering Mathematics, 1997, 32, 27-40.                                                                                    | 1.2 | 8         |
| 47 | Pressure drop in pipelines due to pump trip event. ANZIAM Journal, 0, 57, 163.                                                                                                         | 0.0 | Ο         |
| 48 | A note on Navier-Stokes equations with nonorthogonal coordinates. ANZIAM Journal, 0, 59, 335.                                                                                          | 0.0 | 0         |
| 49 | Unsteady stretching of a glass tube with internal channel pressurisation. Physics of Fluids, 0, , .                                                                                    | 4.0 | 0         |