Hazhir Teymourian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193278/publications.pdf

Version: 2024-02-01

186265 315739 3,511 39 28 38 citations g-index h-index papers 39 39 39 3629 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 2013, 49, 1-8.	10.1	479
2	Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chemical Society Reviews, 2020, 49, 7671-7709.	38.1	460
3	Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sensors, 2020, 5, 2679-2700.	7.8	227
4	An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering, 2022, 6, 1214-1224.	22.5	186
5	Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics, 2021, 172, 112750.	10.1	167
6	Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis. Analytical Chemistry, 2020, 92, 2291-2300.	6.5	154
7	Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials, 2021, 10, e2002255.	7.6	141
8	Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosensors and Bioelectronics, 2012, 33, 60-68.	10.1	133
9	Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. Journal of the American Chemical Society, 2020, 142, 5991-5995.	13.7	130
10	Touchâ€Based Stressless Cortisol Sensing. Advanced Materials, 2021, 33, e2008465.	21.0	127
11	Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosensors and Bioelectronics, 2013, 43, 218-225.	10.1	123
12	Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosensors and Bioelectronics, 2012, 31, 205-211.	10.1	116
13	Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine–viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosensors and Bioelectronics, 2014, 59, 389-396.	10.1	108
14	Enzymatic/Immunoassay Dualâ€Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie - International Edition, 2019, 58, 6376-6379.	13.8	106
15	Wearable and Mobile Sensors for Personalized Nutrition. ACS Sensors, 2021, 6, 1745-1760.	7.8	106
16	Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochimica Acta, 2013, 108, 707-716.	5 . 2	77
17	One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochimica Acta, 2014, 143, 196-206.	5.2	72
18	Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Analytical Chemistry, 2022, 94, 8335-8345.	6. 5	68

#	Article	IF	CITATIONS
19	Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: Application to ethanol biosensing. Talanta, 2012, 90, 91-98.	5.5	59
20	Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 241-245.	13.8	54
21	Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis. Sensors and Actuators B: Chemical, 2014, 205, 136-142.	7.8	44
22	Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosensors and Bioelectronics, 2020, 167, 112512.	10.1	40
23	Fabrication of an Electrochemical <scp>L</scp> â€Cysteine Sensor Based on Graphene Nanosheets Decorated Manganese Oxide Nanocomposite Modified Glassy Carbon Electrode. Electroanalysis, 2013, 25, 2201-2210.	2.9	39
24	Nonâ€Invasive Sweatâ€Based Tracking of Lâ€Dopa Pharmacokinetic Profiles Following an Oral Tablet Administration. Angewandte Chemie - International Edition, 2021, 60, 19074-19078.	13.8	36
25	A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioengineering and Translational Medicine, 2021, 6, e10201.	7.1	33
26	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. Journal of the American Chemical Society, 2021, 143, 18261-18271.	13.7	33
27	Development of a New Labelâ€free, Indicatorâ€free Strategy toward Ultrasensitive Electrochemical DNA Biosensing Based on Fe ₃ O ₄ Nanoparticles/Reduced Graphene Oxide Composite. Electroanalysis, 2017, 29, 409-414.	2.9	32
28	Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sensors and Actuators B: Chemical, 2022, 354, 131234.	7.8	32
29	Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosensors and Bioelectronics, 2021, 182, 113172.	10.1	29
30	An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta, 2020, 218, 121205.	5.5	23
31	Closing the loop for patients with Parkinson disease: where are we?. Nature Reviews Neurology, 2022, 18, 497-507.	10.1	19
32	OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sensors and Actuators B: Chemical, 2020, 320, 128344.	7.8	18
33	A High Performance Electrochemical Biosensing Platform for Glucose Detection and IgE Aptasensing Based on Fe ₃ O ₄ /Reduced Graphene Oxide Nanocomposite. Electroanalysis, 2014, 26, 129-138.	2.9	17
34	Nonâ€Invasive Sweatâ€Based Tracking of Lâ€Dopa Pharmacokinetic Profiles Following an Oral Tablet Administration. Angewandte Chemie, 2021, 133, 19222-19226.	2.0	10
35	Highly Selective Cyanide Coated-Wire Electrode Based on a Recently Synthesized Co(II) Complex With the <formula formulatype="inline"> <tex>\$N,N^{prime}\$</tex> </formula> -Bis(2-Quinolinecarboxamido)- 1,2-Benzene Applying Batch and Flow Injection Analysis Techniques, IEEE Sensors Journal, 2007, 7, 1727-1734.	4.7	4
36	Development of a Novel Insulin Sensor for Clinical Decision-Making. Journal of Diabetes Science and Technology, 2022, , 193229682110711.	2.2	3

#	Article	IF	CITATIONS
37	Clinical Evaluation of a Novel Insulin Immunosensor. Journal of Diabetes Science and Technology, 2022, , 193229682210744.	2.2	3
38	Diabetes Technology Meeting 2021. Journal of Diabetes Science and Technology, 2022, , 193229682210902.	2.2	2
39	63-OR: Towards Point-of-Care Devices: First Evaluation of an Insulin Immunosensor for Type 1 Diabetes. Diabetes, 2020, 69, .	0.6	1