Fulai Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193253/publications.pdf

Version: 2024-02-01

16 papers	3,743 citations	11 h-index	996975 15 g-index
20	20	20	8972 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Identifying differential regulatory control of <i>APOE</i> É>4 on African versus European haplotypes as potential therapeutic targets. Alzheimer's and Dementia, 2022, 18, 1930-1942.	0.8	12
2	53BP1 regulates heterochromatin through liquid phase separation. Nature Communications, 2022, 13, 360.	12.8	46
3	DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nature Genetics, 2022, 54, 1013-1025.	21.4	19
4	A locus at 19q13.31 significantly reduces the ApoE Îμ4 risk for Alzheimer's Disease in African Ancestry. PLoS Genetics, 2022, 18, e1009977.	3.5	19
5	TWOâ€SIGMA: A novel twoâ€component single cell modelâ€based association method for singleâ€cell RNAâ€seq data. Genetic Epidemiology, 2021, 45, 142-153.	1.3	11
6	INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biology, 2021, 22, 241.	8.8	3
7	Abstract 10865: Elucidating the Variant-to-Function Relationship for LIPA, a Risk Locus of Coronary Artery Diseases. Circulation, 2021, 144, .	1.6	0
8	Aberrant methylation underlies insulin gene expression in human insulinoma. Nature Communications, 2020, 11, 5210.	12.8	9
9	Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nature Metabolism, 2020, 2, 1443-1458.	11.9	39
10	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	9.7	110
11	Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key Î ² -Cell-Specific Disease Genes. Cell Reports, 2019, 26, 3132-3144.e7.	6.4	90
12	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
13	Chemical Screening Identifies Enhancers of Mutant Oligodendrocyte Survival and Unmasks a Distinct Pathological Phase in Pelizaeus-Merzbacher Disease. Stem Cell Reports, 2018, 11, 711-726.	4.8	28
14	HiView: an integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. BMC Research Notes, 2016, 9, 159.	1.4	10
15	A hidden Markov random field-based Bayesian method for the detection of long-range chromosomal interactions in Hi-C data. Bioinformatics, 2016, 32, 650-656.	4.1	47
16	A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature, 2013, 503, 290-294.	27.8	1,074