
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193235/publications.pdf Version: 2024-02-01



RUOCHEN LU

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Low-Loss 5-GHz First-Order Antisymmetric Mode Acoustic Delay Lines in Thin-Film Lithium Niobate. IEEE<br>Transactions on Microwave Theory and Techniques, 2021, 69, 541-550.                  | 4.6 | 20        |
| 2  | Microwave Acoustic Devices: Recent Advances and Outlook. IEEE Journal of Microwaves, 2021, 1, 601-609.                                                                                        | 6.5 | 75        |
| 3  | Lateral Spurious Mode Suppression in Lithium Niobate A1 Resonators. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1930-1937.                          | 3.0 | 27        |
| 4  | Gigahertz Low-Loss and High Power Handling Acoustic Delay Lines Using Thin-Film<br>Lithium-Niobate-on-Sapphire. IEEE Transactions on Microwave Theory and Techniques, 2021, 69,<br>3246-3254. | 4.6 | 17        |
| 5  | Near-Zero Drift and High Electromechanical Coupling Acoustic Resonators at > 3.5 GHz. IEEE<br>Transactions on Microwave Theory and Techniques, 2021, 69, 3706-3714.                           | 4.6 | 21        |
| 6  | Acoustic Loss in Thin-Film Lithium Niobate: An Experimental Study. Journal of Microelectromechanical<br>Systems, 2021, 30, 632-641.                                                           | 2.5 | 21        |
| 7  | RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook.<br>Journal of Micromechanics and Microengineering, 2021, 31, 114001.                            | 2.6 | 55        |
| 8  | Optimized Resonators for Piezoelectric Power Conversion. IEEE Open Journal of Power Electronics, 2021, 2, 212-224.                                                                            | 5.7 | 30        |
| 9  | Acoustic Loss of GHz Higher-Order Lamb Waves in Thin-Film Lithium Niobate: A Comparative Study.<br>Journal of Microelectromechanical Systems, 2021, 30, 876-884.                              | 2.5 | 10        |
| 10 | A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air. Sensors, 2021, 21, 149.                                                                                | 3.8 | 7         |
| 11 | Low-Loss and High Power Handling Acoustic Delay Lines Using Thin-Film Lithium Niobate on Sapphire. ,<br>2021, , .                                                                             |     | 2         |
| 12 | A 15.8 GHz A6 Mode Resonator with Q of 720 in Complementarily Oriented Piezoelectric Lithium Niobate Thin Films. , 2021, , .                                                                  |     | 10        |
| 13 | Power Flow Angles of GHz Propagating Acoustic Waves in Thin-Film Lithium Niobate. , 2021, , .                                                                                                 |     | 1         |
| 14 | An A1 Mode Resonator at 12 GHz using 160nm Lithium Niobate Suspended Thin Film. , 2021, , .                                                                                                   |     | 10        |
| 15 | Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices. Applied<br>Physics Letters, 2021, 119, .                                                        | 3.3 | 5         |
| 16 | Fixed-Frequency Control of Piezoelectric Resonator DC-DC Converters for Spurious Mode Avoidance.<br>IEEE Open Journal of Power Electronics, 2021, 2, 582-590.                                 | 5.7 | 9         |
| 17 | A Piezoelectric Micromachined Ultrasonic Transducer Using Thin-Film Lithium Niobate. Journal of<br>Microelectromechanical Systems, 2020, 29, 1412-1414.                                       | 2.5 | 13        |
| 18 | Enabling Higher Order Lamb Wave Acoustic Devices With Complementarily Oriented Piezoelectric Thin<br>Films. Journal of Microelectromechanical Systems, 2020, 29, 1332-1346.                   | 2.5 | 40        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide. IEEE Transactions on<br>Microwave Theory and Techniques, 2020, 68, 3653-3666.                                    | 4.6 | 93        |
| 20 | Low-Loss Unidirectional Acoustic Focusing Transducer in Thin-Film Lithium Niobate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2731-2737.         | 3.0 | 7         |
| 21 | 5.4 GHz Acoustic Delay Lines in Lithium Niobate Thin Film with 3 dB Insertion Loss. , 2020, , .                                                                                          |     | 2         |
| 22 | Surface Acoustic Wave Resonators Using Lithium Niobate on Silicon Carbide Platform. , 2020, , .                                                                                          |     | 14        |
| 23 | 10–60-GHz Electromechanical Resonators Using Thin-Film Lithium Niobate. IEEE Transactions on<br>Microwave Theory and Techniques, 2020, 68, 5211-5220.                                    | 4.6 | 70        |
| 24 | Thin-Film Lithium Niobate Based Piezoelectric Micromachined Ultrasound Transducers. , 2020, , .                                                                                          |     | 3         |
| 25 | Thin-Film Lithium Niobate Acoustic Delay Line Oscillators. , 2020, , .                                                                                                                   |     | 4         |
| 26 | 5-GHz Antisymmetric Mode Acoustic Delay Lines in Lithium Niobate Thin Film. IEEE Transactions on<br>Microwave Theory and Techniques, 2020, 68, 573-589.                                  | 4.6 | 31        |
| 27 | GHz Low-Loss Acoustic RF Couplers in Lithium Niobate Thin Film. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2020, 67, 1448-1461.                         | 3.0 | 9         |
| 28 | High \$Q\$ Antisymmetric Mode Lithium Niobate MEMS Resonators With Spurious Mitigation. Journal of Microelectromechanical Systems, 2020, 29, 135-143.                                    | 2.5 | 42        |
| 29 | Low Phase Noise RF Oscillators Based on Thin-Film Lithium Niobate Acoustic Delay Lines. Journal of<br>Microelectromechanical Systems, 2020, 29, 129-131.                                 | 2.5 | 15        |
| 30 | GHz Broadband SHO Mode Lithium Niobate Acoustic Delay Lines. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2020, 67, 402-412.                              | 3.0 | 35        |
| 31 | A Unidirectional Transducer Design for Scaling GHz AlN-Based RF Microsystems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1250-1257.              | 3.0 | 11        |
| 32 | A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1854-1866. | 3.0 | 11        |
| 33 | A1 Resonators in 128° Y-cut Lithium Niobate with Electromechanical Coupling of 46.4%. Journal of<br>Microelectromechanical Systems, 2020, 29, 313-319.                                   | 2.5 | 88        |
| 34 | 8.5 GHz and 11.5 GHz Acoustic Delay Lines Using Higher-Order Lamb Modes in Lithium Niobate Thin Film. ,<br>2020, , .                                                                     |     | 2         |
| 35 | Enabling Channelizing Filters for High Impedance Nodes with Temperature Compensated Lamb-Wave Resonators. , 2020, , .                                                                    |     | 1         |
| 36 | Suppression of Spurious Modes in Lithium Niobate A1 Resonators Using Dispersion Matching. , 2020, , .                                                                                    |     | 1         |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | 5 GHz A1 Mode Lateral Overtone Bulk Acoustic Resonators in Thin-Film Lithium Niobate. , 2020, , .                                                                                        |     | 7         |
| 38 | Aluminum Nitride Lamb Wave Delay Lines With Sub-6 dB Insertion Loss. Journal of<br>Microelectromechanical Systems, 2019, 28, 569-571.                                                    | 2.5 | 16        |
| 39 | 4.5 GHz Lithium Niobate MEMS Filters With 10% Fractional Bandwidth for 5G Front-Ends. Journal of Microelectromechanical Systems, 2019, 28, 575-577.                                      | 2.5 | 77        |
| 40 | Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1373-1386.           | 3.0 | 49        |
| 41 | A 1.65 GHz Lithium Niobate A1 Resonator with Electromechanical Coupling of 14% and Q of 3112. , 2019, , .                                                                                |     | 12        |
| 42 | Power-Efficient Ovenized Lithium Niobate SHO Resonator Arrays with Passive Temperature Compensation. , 2019, , .                                                                         |     | 7         |
| 43 | Towards Digitally Addressable Delay Synthesis: GHZ Low-Loss Acoustic Delay Elements from 20 NS to 900 NS. , 2019, , .                                                                    |     | 4         |
| 44 | A Chip-Scale RF MEMS Gyrator via Hybridizing Lorentz-Force and Piezoelectric Transductions. , 2019, , .                                                                                  |     | 5         |
| 45 | Boosting Qs of AlN Resonators by Redefining Acoustic Boundaries. , 2019, , .                                                                                                             |     | 7         |
| 46 | Resonant Torsional Micro-Actuators Using Thin-Film Lithium Niobate. , 2019, , .                                                                                                          |     | 6         |
| 47 | Temperature Stability Analysis of Thin-Film Lithium Niobate SH0 Plate Wave Resonators. Journal of<br>Microelectromechanical Systems, 2019, 28, 799-809.                                  | 2.5 | 17        |
| 48 | Advancing Lithium Niobate Based Thin Film Devices for 5G Front-Ends. , 2019, , .                                                                                                         |     | 7         |
| 49 | A Radio Frequency Nonreciprocal Network Based on Switched Acoustic Delay Lines. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 1516-1530.                               | 4.6 | 37        |
| 50 | Low-Loss and Wideband Acoustic Delay Lines. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 1379-1391.                                                                   | 4.6 | 40        |
| 51 | Accurate Extraction of Large Electromechanical Coupling in Piezoelectric MEMS Resonators. Journal of Microelectromechanical Systems, 2019, 28, 209-218.                                  | 2.5 | 80        |
| 52 | Nanowatt-Level Wakeup Receiver Front Ends Using MEMS Resonators for Impedance Transformation.<br>IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 1615-1627.              | 4.6 | 40        |
| 53 | Q-enhanced Lithium Niobate SH0 Resonators with Optimized Acoustic Boundaries. , 2019, , .                                                                                                |     | 12        |
| 54 | A Highly Reconfigurable Bit-Level Duty-Cycled TRF Receiver Achieving â^'106-dBm Sensitivity and 33-nW<br>Average Power Consumption. IEEE Solid-State Circuits Letters, 2019, 2, 309-312. | 2.0 | 11        |

RUOCHEN LU

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A C-band Lithium Niobate MEMS Filter with 10% Fractional Bandwidth for 5G Front-ends. , 2019, , .                                                                                             |     | 4         |
| 56 | A C-band Lithium Niobate MEMS Filter with 10% Fractional Bandwidth for 5G Front-ends. , 2019, , .                                                                                             |     | 0         |
| 57 | 5 GHz Acoustic Delay Lines using Antisymmetric Mode in Lithium Niobate Thin Film. , 2019, , .                                                                                                 |     | 4         |
| 58 | A 300-500 MHz Tunable Oscillator Exploiting Ten Overtones in Single Lithium Niobate Resonator. , 2019, , .                                                                                    |     | 7         |
| 59 | Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 934-944. | 3.0 | 26        |
| 60 | A Radio Frequency Non-Reciprocal Network Based on Switched Low-Loss Acoustic Delay Lines. , 2018, , .                                                                                         |     | 2         |
| 61 | SO-Mode Lithium Niobate Acoustic Delay Lines with 1 dB Insertion Loss. , 2018, , .                                                                                                            |     | 22        |
| 62 | Toward Ka Band Acoustics: Lithium Niobate Asymmetrical Mode Piezoelectric MEMS Resonators. , 2018, , .                                                                                        |     | 70        |
| 63 | A Radio Frequency Comb Filter for Sparse Fourier Transform-Based Spectrum Sensing. , 2018, , .                                                                                                |     | 2         |
| 64 | Scaling Acoustic Filters Towards 5G. , 2018, , .                                                                                                                                              |     | 33        |
| 65 | Lithium niobate lateral overtone resonators for low power frequency-hopping applications. , 2018, , .                                                                                         |     | 16        |
| 66 | An SH0 lithium niobate trans-impedance chirp compressor with high voltage gain. , 2018, , .                                                                                                   |     | 4         |
| 67 | Exploiting parallelism in resonators for large voltage gain in low power wake up radio front ends. , 2018, , .                                                                                |     | 33        |
| 68 | AÂFrequency Independent Framework for Synthesis of Programmable Non-reciprocal Networks.<br>Scientific Reports, 2018, 8, 14655.                                                               | 3.3 | 17        |
| 69 | 1.7 GHz Y-Cut Lithium Niobate MEMS Resonators with FoM of336 andfQ of9.15×10 <sup>12</sup> ., 2018, , .                                                                                       |     | 12        |
| 70 | RF Filters with Periodic Passbands for Sparse Fourier Transform-Based Spectrum Sensing. Journal of<br>Microelectromechanical Systems, 2018, 27, 931-944.                                      | 2.5 | 25        |
| 71 | An SHO Lithium Niobate dispersive delay line for chirp compression-enabled low power radios. , 2017, , .                                                                                      |     | 12        |
| 72 | 5 Ghz lithium niobate MEMS resonators with high FoM of 153. , 2017, , .                                                                                                                       |     | 75        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A 150 MHz voltage controlled oscillator using lithium niobate RF-MEMS resonator. , 2017, , .                                                                                                                          |     | 11        |
| 74 | Simultaneous wireless power transfer and communication to chip-scale devices. , 2017, , .                                                                                                                             |     | 1         |
| 75 | Lithium Niobate MEMS Chirp Compressors for Near Zero Power Wake-Up Radios. Journal of<br>Microelectromechanical Systems, 2017, 26, 1204-1215.                                                                         | 2.5 | 30        |
| 76 | Lithium niobate MEMS devices and subsystems for radio frequency signal processing. , 2017, , .                                                                                                                        |     | 12        |
| 77 | An SH0 lithium niobate correlator for orthogonal frequency coded spread spectrum communications. , 2017, , .                                                                                                          |     | 17        |
| 78 | A high FoM lithium niobate resonant transformer for passive voltage amplification. , 2017, , .                                                                                                                        |     | 23        |
| 79 | Lithium niobate phononic crystals for radio frequency SHO waves. , 2017, , .                                                                                                                                          |     | 2         |
| 80 | Mitigation of AO spurious modes in AlN MEMS resonators with SiO2 addendums. , 2016, , .                                                                                                                               |     | 5         |
| 81 | Analysis and Removal of Spurious Response in SH0 Lithium Niobate MEMS Resonators. IEEE<br>Transactions on Electron Devices, 2016, 63, 2066-2073.                                                                      | 3.0 | 46        |
| 82 | Piezoelectric RF resonant voltage amplifiers for IoT applications. , 2016, , .                                                                                                                                        |     | 15        |
| 83 | High speed mid-infrared detectors based on MEMS resonators and spectrally selective metamaterials. , 2016, , .                                                                                                        |     | 4         |
| 84 | Parametric excitation in geometrically optimized AlN contour mode resonators. , 2015, , .                                                                                                                             |     | 2         |
| 85 | Study of thermal nonlinearity in lithium niobate-based MEMS resonators. , 2015, , .                                                                                                                                   |     | 28        |
| 86 | A non-resonant, gravity-induced micro triboelectric harvester to collect kinetic energy from<br>low-frequency jiggling movements of human limbs. Journal of Micromechanics and Microengineering,<br>2014, 24, 065010. | 2.6 | 13        |