## Li-June Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193025/publications.pdf Version: 2024-02-01



LI-LUNE MINC

| #  | Article                                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The distribution in native populations from Mexico and Central America of the C677T variant in the MTHFR gene. American Journal of Human Biology, 2021, 33, e23567.                                                                                                                                                   | 1.6  | 0         |
| 2  | Recent advances of cyclotriphosphazene derivatives as fluorescent dyes. Dyes and Pigments, 2021, 188, 109214.                                                                                                                                                                                                         | 3.7  | 18        |
| 3  | Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and<br>Dynamic Ligand Exchange Study. Journal of the American Chemical Society, 2020, 142, 1811-1821.                                                                                                                    | 13.7 | 53        |
| 4  | To be structurally well-defined or not to be, that is not the question for<br>iron(III)–poly(4-Vinylpyridine-co-acrylamide) to exhibit catechol dioxygenase activity!. Catalysis<br>Communications, 2018, 106, 87-91.                                                                                                 | 3.3  | 0         |
| 5  | Right-Handed Helical Foldamers Consisting of De Novo <scp>d</scp> -AApeptides. Journal of the American Chemical Society, 2017, 139, 7363-7369.                                                                                                                                                                        | 13.7 | 52        |
| 6  | Catalytic Cooperativity, Nuclearity, and O <sub>2</sub> /H <sub>2</sub> O <sub>2</sub> Specificity of<br>Multiâ€Copper(II) Complexes of Cyclenâ€Tethered Cyclotriphosphazene Ligands in Aqueous Media.<br>European Journal of Inorganic Chemistry, 2017, 2017, 4899-4908.                                             | 2.0  | 8         |
| 7  | Catalytic Cooperativity, Nuclearity, and O <sub>2</sub> /H <sub>2</sub> O <sub>2</sub> Specificity of<br>Multiâ€Copper(II) Complexes of Cyclenâ€Tethered Cyclotriphosphazene Ligands in Aqueous Media.<br>European Journal of Inorganic Chemistry, 2017, 2017, 4885-4885.                                             | 2.0  | 2         |
| 8  | Front Cover: Catalytic Cooperativity, Nuclearity, and O <sub>2</sub> /H <sub>2</sub> O <sub>2</sub><br>Specificity of Multiâ€Copper(II) Complexes of Cyclenâ€Tethered Cyclotriphosphazene Ligands in Aqueous<br>Media (Eur. J. Inorg. Chem. 42/2017). European Journal of Inorganic Chemistry, 2017, 2017, 4884-4884. | 2.0  | 1         |
| 9  | Mechanistic Insights into Phenol Oxidation by a Copper(II) Complex of a Pyridine―and Amide ontaining<br>Copolymer in an Aqueous Medium. European Journal of Inorganic Chemistry, 2015, 2015, 375-381.                                                                                                                 | 2.0  | 3         |
| 10 | Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni2+- and other<br>metal-ion-substituted wild-type copper–zinc superoxide dismutases. Journal of Biological Inorganic<br>Chemistry, 2014, 19, 647-657.                                                                                    | 2.6  | 9         |
| 11 | Metal Binding of Flavonoids and Their Distinct Inhibition Mechanisms Toward the Oxidation Activity<br>of Cu2+–β-Amyloid: Not Just Serving as Suicide Antioxidants!. Inorganic Chemistry, 2013, 52, 679-690.                                                                                                           | 4.0  | 30        |
| 12 | Vitamin B6s inhibit oxidative stress caused by Alzheimer's disease-related Cull-β-amyloid<br>complexes—cooperative action of phospho-moiety. Bioorganic and Medicinal Chemistry Letters, 2011,<br>21, 6430-6432.                                                                                                      | 2.2  | 28        |
| 13 | Metal Complexes of a Multidentate Cyclophosphazene with Imidazoleâ€Containing Side Chains for<br>Hydrolyses of Phosphoesters – Bimolecular vs. Intramolecular Dinuclear Pathway. European Journal<br>of Inorganic Chemistry, 2011, 2011, 674-682.                                                                     | 2.0  | 18        |
| 14 | Metallopeptides — from Drug Discovery to Catalysis. Journal of the Chinese Chemical Society, 2010, 57, 285-299.                                                                                                                                                                                                       | 1.4  | 10        |
| 15 | Radical annihilation of γâ€rayâ€irradiated contact lens blanks made of a 2â€hydroxyethyl methacrylate<br>copolymer at elevated temperatures. Journal of Applied Polymer Science, 2010, 117, 3114-3120.                                                                                                                | 2.6  | 2         |
| 16 | 1H NMR, Mechanism, and Mononuclear Oxidative Activity of the Antibiotic Metallopeptide Bacitracin:<br>The Role of d-Glu-4, Interaction with Pyrophosphate Moiety, DNA Binding and Cleavage, and Bioactivity.<br>Journal of the American Chemical Society, 2010, 132, 5652-5661.                                       | 13.7 | 28        |
| 17 | Iron(III) Complexes of Metalâ€Binding Copolymers as Proficient Catalysts for Acid Hydrolysis of<br>Phosphodiesters and Oxidative DNA Cleavage – Insight into the Rational Design of Functional<br>Metallopolymers. European Journal of Inorganic Chemistry, 2009, 2009, 1199-1207.                                    | 2.0  | 15        |
| 18 | How Well Should the Active Site and the Specific Recognition Be Defined for Proficient Catalysis? –<br>Effective and Cooperative Polyphenol/Catechol Oxidation and Oxidative DNA Cleavage by a<br>Copper(II)â€Binding and Hâ€Bonding Copolymer. European Journal of Inorganic Chemistry, 2008, 2008,<br>2584-2592.    | 2.0  | 8         |

LI-JUNE MING

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metallo-ROS in Alzheimer's Disease: Oxidation of Neurotransmitters by Cull-β-Amyloid and<br>Neuropathology of the Disease. Angewandte Chemie - International Edition, 2007, 46, 3337-3341.                                                                         | 13.8 | 44        |
| 20 | Overexpression and Mechanistic Characterization of Blastula Protease 10, a Metalloprotease Involved<br>in Sea Urchin Embryogenesis and Development. Journal of Biological Chemistry, 2006, 281, 10737-10744.                                                       | 3.4  | 14        |
| 21 | Effective heterogeneous hydrolysis of phosphodiester by pyridine-containing metallopolymers.<br>Inorganica Chimica Acta, 2005, 358, 1247-1252.                                                                                                                     | 2.4  | 19        |
| 22 | Alzheimer's Disease Related Copper(II)- β-Amyloid Peptide Exhibits Phenol Monooxygenase and Catechol<br>Oxidase Activities. Angewandte Chemie - International Edition, 2005, 44, 5501-5504.                                                                        | 13.8 | 41        |
| 23 | Catechol Oxidase-like Oxidation Chemistry of the 1–20 and 1–16 Fragments of Alzheimer's<br>Disease-related β-Amyloid Peptide. Journal of Biological Chemistry, 2005, 280, 16601-16609.                                                                             | 3.4  | 40        |
| 24 | Structure and function of ?metalloantibiotics?. Medicinal Research Reviews, 2003, 23, 697-762.                                                                                                                                                                     | 10.5 | 195       |
| 25 | Iron(III)–Chelex resin complex as a prototypical heterogeneous catalyst for phosphodiester<br>hydrolysis. Catalysis Communications, 2003, 4, 549-553.                                                                                                              | 3.3  | 19        |
| 26 | Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin. Journal of Inorganic Biochemistry, 2002, 91, 46-58.                                                                                                                 | 3.5  | 143       |
| 27 | Mechanistic studies of the astacin-like Serratia metalloendopeptidase serralysin: highly active<br>(>2000%) Co(II) and Cu(II) derivatives for further corroboration of a "metallotriad" mechanism.<br>Journal of Biological Inorganic Chemistry, 2002, 7, 600-610. | 2.6  | 29        |
| 28 | Paramagnetic Cobalt(II) as an NMR Probe of Dendrimer Structure:Â Mobility and Cooperativity of<br>Dendritic Arms. Journal of the American Chemical Society, 2001, 123, 8583-8592.                                                                                  | 13.7 | 59        |
| 29 | Metal ion binding and activation of Streptomyces griseus dinuclear aminopeptidase: cadmium(II)<br>binding as a model. Journal of Biological Inorganic Chemistry, 2001, 6, 120-127.                                                                                 | 2.6  | 12        |
| 30 | Remarkable enhancement of the hydrolyses of phosphoesters by dinuclear centers: Streptomyces<br>aminopeptidase as a â€~natural model system'. Chemical Communications, 2000, , 2501-2502.                                                                          | 4.1  | 15        |
| 31 | A 1010 Rate Enhancement of Phosphodiester Hydrolysis by a Dinuclear<br>Aminopeptidase—Transition-State Analogues as Substrates?. Angewandte Chemie - International<br>Edition, 1999, 38, 2914-2916.                                                                | 13.8 | 18        |
| 32 | NMR Study of Dendrimer Structures Using Paramagnetic Cobalt(II) as a Probe. Inorganic Chemistry,<br>1999, 38, 4498-4502.                                                                                                                                           | 4.0  | 30        |
| 33 | Different phosphate binding modes ofStreptomyces griseusaminopeptidase between crystal and solution states and the status of zinc-bound water. FEBS Letters, 1999, 455, 321-324.                                                                                   | 2.8  | 17        |
| 34 | Identification of Metal-Binding Residues in theKlebsiella aerogenesUrease Nickel Metallochaperone,<br>UreEâ€. Biochemistry, 1999, 38, 4078-4088.                                                                                                                   | 2.5  | 85        |
| 35 | The mechanistic role of the coordinated tyrosine in astacin. Journal of Inorganic Biochemistry, 1998, 72, 57-62.                                                                                                                                                   | 3.5  | 42        |
| 36 | Spectroscopic characterization of metal binding by Klebsiella aerogenes UreE urease accessory protein. Journal of Biological Inorganic Chemistry, 1998, 3, 150-160.                                                                                                | 2.6  | 36        |

LI-JUNE MING

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Proton NMR Spectroscopy as a Probe of Dinuclear Copper(II) Active Sites in Metalloproteins.<br>Characterization of the Hyperactive Copper(II)-Substituted Aminopeptidase fromAeromonas<br>proteolytica. Journal of the American Chemical Society, 1998, 120, 6329-6335. | 13.7 | 34        |
| 38 | Comprehensive 2D1H NMR Studies of Paramagnetic Lanthanide(III) Complexes of Anthracycline Antitumor Antibiotics. Inorganic Chemistry, 1998, 37, 2255-2262.                                                                                                              | 4.0  | 24        |
| 39 | An Ytterbium(III) Complex of Daunomycin, a Model Metal Complex of Anthracycline Antibiotics.<br>Inorganic Chemistry, 1994, 33, 4617-4618.                                                                                                                               | 4.0  | 15        |
| 40 | Two-dimensional1H NMR studies of Ca(II)-binding site in proteins using paramagnetic lanthanides(III) as probes and Yb(III)-substituted bovine α-lactalbumin as an example. Magnetic Resonance in Chemistry, 1993, 31, S104-S109.                                        | 1.9  | 8         |