Felix Mauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/71919/publications.pdf

Version: 2024-02-01

57 papers 10,773 citations

39 h-index 56 g-index

60 all docs 60 does citations

60 times ranked

9596 citing authors

#	Article	IF	CITATIONS
1	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
2	Antifungal Hydrolases in Pea Tissue. Plant Physiology, 1988, 88, 936-942.	4.8	1,120
3	Plant chitinases are potent inhibitors of fungal growth. Nature, 1986, 324, 365-367.	27.8	871
4	Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses[W]. Plant Cell, 2002, 14, 559-574.	6.6	849
5	The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 2005, 8, 409-414.	7.1	706
6	Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983, 157, 22-31.	3.2	649
7	Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 2002, 49, 515-532.	3.9	465
8	Identification of PAD2 as a \hat{l}^3 -glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant Journal, 2006, 49, 159-172.	5.7	329
9	Ethylene: Symptom, Not Signal for the Induction of Chitinase and \hat{l}^2 -1,3-Glucanase in Pea Pods by Pathogens and Elicitors. Plant Physiology, 1984, 76, 607-611.	4.8	305
10	Antifungal Hydrolases in Pea Tissue. Plant Physiology, 1988, 87, 325-333.	4.8	304
11	The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2213-2224.	6.6	302
12	Differential Induction of Distinct Glutathione-S-Transferases of Wheat by Xenobiotics and by Pathogen Attack. Plant Physiology, 1993, 102, 1193-1201.	4.8	234
13	Colorimetric assay for chitinase. Methods in Enzymology, 1988, , 430-435.	1.0	203
14	Export of Salicylic Acid from the Chloroplast Requires the Multidrug and Toxin Extrusion-Like Transporter EDS5 Â Â. Plant Physiology, 2013, 162, 1815-1821.	4.8	195
15	Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and b-1,3-Glucanase in Bean Leaves. Plant Cell, 1989, 1, 447.	6.6	192
16	The glutathioneâ€deficient mutant <i>pad2â€1 </i> accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore <i>Spodoptera littoralis </i> Plant Journal, 2008, 55, 774-786.	5.7	182
17	Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant Journal, 2010, 62, 840-851.	5.7	180
18	Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 2021, 16, 344-353.	31.5	172

#	Article	IF	Citations
19	Characterization of an Arabidopsis-Phytophthora Pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant Journal, 2001, 28, 293-305.	5.7	161
20	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	2.6	160
21	The sterolâ€binding activity of PATHOGENESISâ€RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant Journal, 2017, 89, 502-509.	5.7	156
22	Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta, 2011, 233, 1-12.	3.2	125
23	A Pathogen-Induced Wheat Gene Encodes a Protein Homologous to Glutathione-S-Transferases. Molecular Plant-Microbe Interactions, 1991, 4, 14.	2.6	124
24	Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of Experimental Botany, 2008, 59, 4017-4027.	4.8	123
25	Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Molecular Biology, 2004, 54, 817-835.	3.9	111
26	Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant Journal, 2001, 25, 67-77.	5.7	110
27	Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: \hat{l}^2 -aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology, 2003, 4, 237-248.	4.2	97
28	Glutathione Deficiency of the Arabidopsis Mutant <i>pad2-1</i> Affects Oxidative Stress-Related Events, Defense Gene Expression, and the Hypersensitive Response \hat{A} \hat{A} \hat{A} . Plant Physiology, 2011, 157, 2000-2012.	4.8	90
29	Cloning and sequencing of cDNAs encoding a pathogen-induced putative peroxidase of wheat (Triticum aestivum L.). Plant Molecular Biology, 1991, 16, 329-331.	3.9	81
30	Sequence of a wheat cDNA encoding a pathogen-induced thaumatin-like protein. Plant Molecular Biology, 1991, 17, 283-285.	3.9	73
31	Evolution of the cutinase gene family: Evidence for lateral gene transfer of a candidate Phytophthora virulence factor. Gene, 2008, 408, 1-8.	2.2	67
32	The Rapid Induction of Glutathione S-Transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the Result of Combined Salicylic Acid and Ethylene Signaling. Plant and Cell Physiology, 2003, 44, 750-757.	3.1	66
33	Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 2016, 9, 662-681.	8.3	62
34	Sulphur Deficiency Causes a Reduction in Antimicrobial Potential and Leads to Increased Disease Susceptibility of Oilseed Rape. Journal of Phytopathology, 2005, 153, 27-36.	1.0	61
35	Mechanosensitive Expression of a Lipoxygenase Gene in Wheat. Plant Physiology, 1997, 114, 1561-1566.	4.8	53

Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aestivum) Tj ETQq $0\,0\,3\,$ gBT /Overlock $10\,$ To Tierror (Triticum aest

36

#	Article	IF	Citations
37	<i>Research Notes</i> Sequence and Expression of a Wheat Gene that Encodes a Novel Protein Associated with Pathogen Defense. Molecular Plant-Microbe Interactions, 1992, 5, 516.	2.6	45
38	Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 3385-3395.	4.8	42
39	A conserved Rx <scp>LR</scp> effector interacts with host <scp>RABA</scp> â€type <scp>GTP</scp> ases to inhibit vesicleâ€mediated secretion of antimicrobial proteins. Plant Journal, 2018, 95, 187-203.	5.7	42
40	Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses toPseudomonas syringae. Journal of Experimental Botany, 2017, 68, erw485.	4.8	41
41	Characterization of a rice gene induced by Pseudomonas syringae pv. syringae: requirement for the bacterial lemA gene function. Physiological and Molecular Plant Pathology, 1995, 46, 71-81.	2.5	40
42	Ethylene-induced chitinase and ?-1,3-glucanase accumulate specifically in the lower epidermis and along vascular strands of bean leaves. Planta, 1992, 186, 367-75.	3.2	39
43	The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to <i>Phytophthora brassicae</i> . Plant Journal, 2009, 58, 287-298.	5.7	39
44	Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Molecular Biology, 2000, 43, 59-66.	3.9	37
45	A <i>Phytophthora ⟨i⟩ effector protein promotes symplastic cellâ€toâ€cell trafficking by physical interaction with plasmodesmataâ€localised callose synthases. New Phytologist, 2020, 227, 1467-1478.</i>	7.3	30
46	Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen <i>Phytophthora brassicae</i> . Plant Signaling and Behavior, 2010, 5, 1099-1101.	2.4	25
47	Characterization of the rice pathogen-related protein Rir1a and regulation of the corresponding gene. Plant Molecular Biology, 1998, 38, 577-586.	3.9	23
48	Quantitative field resistance of wheat to powdery mildew and defense reactions at the seedling stage: identification of a potential marker. Physiological and Molecular Plant Pathology, 1995, 47, 185-199.	2.5	18
49	A wheat glutathione-S-transferase gene with transposon-like sequences in the promoter region. Plant Molecular Biology, 1991, 16, 1089-1091.	3.9	15
50	Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. Frontiers in Plant Science, 2021, 12, 657451.	3.6	13
51	Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. Journal of Experimental Botany, 2022, 73, 2369-2384.	4.8	12
52	Chitinase from Phaseolus vulgaris leaves. Methods in Enzymology, 1988, 161, 479-484.	1.0	10
53	The potential of antagonistic moroccan <i>Streptomyces</i> isolates for the biological control of dampingâ€off disease of pea (<i>Pisum sativum</i> L.) caused by <i>Aphanomyces euteiches</i> Journal of Phytopathology, 2019, 167, 82-90.	1.0	10
54	Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection. Plants, 2021, 10, 1946.	3.5	10

#	Article	IF	CITATIONS
55	Construction and application of a microprojectile system for the transfection of organotypic brain slices. Journal of Neuroscience Methods, 2000, 101, 171-179.	2.5	6
56	Potential of Moroccan isolates of plant growth promoting streptomycetes for biocontrol of the root rot disease of pea plants caused by the oomycete pathogen <i>Aphanomyces euteiches</i> Biocontrol Science and Technology, 0, , 1-18.	1.3	2
57	Marasmius oreades agglutinin enhances resistance of Arabidopsis against plant-parasitic nematodes and a herbivorous insect. BMC Plant Biology, 2021, 21, 402.	3.6	1