Lisa Marie Monteggia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Neurotrophic Model for Stress-Related Mood Disorders. Biological Psychiatry, 2006, 59, 1116-1127.	0.7	2,873
2	Neurobiology of Depression. Neuron, 2002, 34, 13-25.	3.8	2,688
3	Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress. Science, 2006, 311, 864-868.	6.0	1,869
4	NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 2011, 475, 91-95.	13.7	1,584
5	Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacological Reviews, 2012, 64, 238-258.	7.1	1,109
6	BDNF – a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.	2.0	701
7	Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10827-10832.	3.3	597
8	Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biological Psychiatry, 2007, 61, 187-197.	0.7	456
9	Selective Loss of Brain-Derived Neurotrophic Factor in the Dentate Gyrus Attenuates Antidepressant Efficacy. Biological Psychiatry, 2008, 63, 642-649.	0.7	332
10	MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9391-9396.	3.3	241
11	Activity-Dependent Suppression of Miniature Neurotransmission through the Regulation of DNA Methylation. Journal of Neuroscience, 2008, 28, 395-406.	1.7	239
12	Postnatal Loss of Methyl-CpG Binding Protein 2 in the Forebrain is Sufficient to Mediate Behavioral Aspects of Rett Syndrome in Mice. Biological Psychiatry, 2006, 59, 468-476.	0.7	227
13	Acute Suppression of Spontaneous Neurotransmission Drives Synaptic Potentiation. Journal of Neuroscience, 2013, 33, 6990-7002.	1.7	225
14	Synaptic Mechanisms Underlying Rapid Antidepressant Action of Ketamine. American Journal of Psychiatry, 2012, 169, 1150-1156.	4.0	220
15	MeCP2-Dependent Transcriptional Repression Regulates Excitatory Neurotransmission. Current Biology, 2006, 16, 710-716.	1.8	198
16	Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8649-8654.	3.3	186
17	Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biological Psychiatry, 2021, 90, 128-136.	0.7	186
18	The Role of Eukaryotic Elongation Factor 2 Kinase in Rapid Antidepressant Action of Ketamine. Biological Psychiatry, 2013, 73, 1199-1203.	0.7	182

LISA MARIE MONTEGGIA

#	Article	IF	CITATIONS
19	BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell, 2022, 185, 62-76.	13.5	160
20	Histone Deacetylases 1 and 2 Form a Developmental Switch That Controls Excitatory Synapse Maturation and Function. Journal of Neuroscience, 2009, 29, 8288-8297.	1.7	147
21	Effects of a ketamine metabolite on synaptic NMDAR function. Nature, 2017, 546, E1-E3.	13.7	145
22	Gender-Specific Impact of Brain-Derived Neurotrophic Factor Signaling on Stress-Induced Depression-Like Behavior. Biological Psychiatry, 2009, 66, 84-90.	0.7	140
23	MeCP2-Mediated Transcription Repression in the Basolateral Amygdala May Underlie Heightened Anxiety in a Mouse Model of Rett Syndrome. Journal of Neuroscience, 2009, 29, 4218-4227.	1.7	124
24	Antidepressant actions of ketamine: from molecular mechanisms to clinical practice. Current Opinion in Neurobiology, 2015, 30, 139-143.	2.0	123
25	Targeting Homeostatic Synaptic Plasticity for Treatment of Mood Disorders. Neuron, 2020, 106, 715-726.	3.8	107
26	Reelin Mobilizes a VAMP7-Dependent Synaptic Vesicle Pool and Selectively Augments Spontaneous Neurotransmission. Neuron, 2013, 80, 934-946.	3.8	106
27	How does ketamine elicit a rapid antidepressant response?. Current Opinion in Pharmacology, 2015, 20, 35-39.	1.7	96
28	The best way forward. Nature, 2014, 515, 200-201.	13.7	90
29	Selective role for DNMT3a in learning and memory. Neurobiology of Learning and Memory, 2014, 115, 30-37.	1.0	73
30	Use-Dependent AMPA Receptor Block Reveals Segregation of Spontaneous and Evoked Glutamatergic Neurotransmission. Journal of Neuroscience, 2011, 31, 5378-5382.	1.7	69
31	Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB Signaling in Synaptic Efficacy of CA3-CA1 Synapses. Cell Reports, 2018, 24, 1550-1561.	2.9	68
32	Rett Syndrome and the Impact of MeCP2 Associated Transcriptional Mechanisms on Neurotransmission. Biological Psychiatry, 2009, 65, 204-210.	0.7	66
33	Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues in Clinical Neuroscience, 2014, 16, 359-371.	1.8	66
34	Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nature Neuroscience, 2021, 24, 1100-1109.	7.1	52
35	Molecular and functional analysis of hyperpolarizationâ€activated pacemaker channels in the hippocampus after entorhinal cortex lesion. FASEB Journal, 2001, 15, 2689-2701.	0.2	49
36	Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse Number and Learning and Memory. Biological Psychiatry, 2016, 80, 140-148.	0.7	44

LISA MARIE MONTEGGIA

#	Article	IF	CITATIONS
37	Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade. Frontiers in Molecular Neuroscience, 2014, 7, 94.	1.4	44
38	Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. ELife, 2017, 6, .	2.8	42
39	Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nature Communications, 2017, 8, 14436.	5.8	39
40	A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Reports, 2021, 36, 109513.	2.9	39
41	Meeting Report: Can We Make Animal Models of Human Mental Illness?. Biological Psychiatry, 2018, 84, 542-545.	0.7	38
42	A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory. Learning and Memory, 2014, 21, 564-568.	0.5	37
43	MeCP2 and histone deacetylases 1 and 2 in dorsal striatum collectively suppress repetitive behaviors. Nature Neuroscience, 2016, 19, 1506-1512.	7.1	36
44	TrkB Signaling in Dorsal Raphe Nucleus is Essential for Antidepressant Efficacy and Normal Aggression Behavior. Neuropsychopharmacology, 2017, 42, 886-894.	2.8	35
45	The role of eEF2 kinase in the rapid antidepressant actions of ketamine. Advances in Pharmacology, 2020, 89, 79-99.	1.2	35
46	Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron, 2021, 109, 59-72.e5.	3.8	31
47	Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behavioural Brain Research, 2020, 380, 112378.	1.2	29
48	The Ketamine Metabolite 2R,6R-Hydroxynorketamine Blocks NMDA Receptors and Impacts Downstream Signaling Linked to Antidepressant Effects. Neuropsychopharmacology, 2018, 43, 221-222.	2.8	25
49	Analysis of pyramidal neuron morphology in an inducible knockout of brain-derived neurotrophic factor. Biological Psychiatry, 2005, 57, 932-934.	0.7	24
50	Decoding transcriptional repressor complexes in the adult central nervous system. Neuropharmacology, 2014, 80, 45-52.	2.0	23
51	Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength. Journal of Neuroscience, 2017, 37, 6224-6230.	1.7	22
52	Spontaneous and evoked neurotransmission are partially segregated at inhibitory synapses. ELife, 2020, 9, .	2.8	22
53	Elucidating the Role of Brain-Derived Neurotrophic Factor in the Brain. American Journal of Psychiatry, 2007, 164, 1790-1790.	4.0	19
54	Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Reports, 2021, 37, 109918.	2.9	18

LISA MARIE MONTEGGIA

#	Article	IF	CITATIONS
55	A subthreshold synaptic mechanism regulating BDNF expression and resting synaptic strength. Cell Reports, 2021, 36, 109467.	2.9	17
56	Scopolamine and Ketamine: Evidence of Convergence?. Biological Psychiatry, 2013, 74, 712-713.	0.7	15
57	VAMP4 Maintains a Ca2+-Sensitive Pool of Spontaneously Recycling Synaptic Vesicles. Journal of Neuroscience, 2020, 40, 5389-5401.	1.7	15
58	Behavioral Analysis of SNAP-25 and Synaptobrevin-2 Haploinsufficiency in Mice. Neuroscience, 2019, 420, 129-135.	1.1	13
59	A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
60	D-cycloserine improves synaptic transmission in an animal mode of Rett syndrome. PLoS ONE, 2017, 12, e0183026.	1.1	10
61	Inactivation of NMDA Receptors in the Ventral Tegmental Area during Cocaine Self-Administration Prevents GluA1 Upregulation but with Paradoxical Increases in Cocaine-Seeking Behavior. Journal of Neuroscience, 2018, 38, 575-585.	1.7	8
62	Probing the segregation of evoked and spontaneous neurotransmission via photobleaching and recovery of a fluorescent glutamate sensor. ELife, 2022, 11, .	2.8	6
63	Toward Better Animal Models for Molecular Psychiatry. Biological Psychiatry, 2016, 79, 2-3.	0.7	3
64	CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. Journal of Neuroscience Methods, 2017, 278, 57-64.	1.3	3
65	Engineering MeCP2 to spy on its targets. Nature Medicine, 2017, 23, 1120-1122.	15.2	3
66	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	0.7	2
67	Optical analysis of AMPAR-mediated synaptic scaling in mouse hippocampus. STAR Protocols, 2022, 3, 101443.	0.5	1
68	<pre><scp>MeCP2</scp> lossâ€ofâ€function dysregulates <scp>microRNAs</scp> regionally and disrupts excitatory/inhibitory synaptic transmission balance. Hippocampus, 0, , .</pre>	0.9	1