List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes and Diseases, 2022, 9, 1579-1593.	3.4	13
2	CDK4/6 Inhibition Suppresses p73 Phosphorylation and Activates DR5 to Potentiate Chemotherapy and Immune Checkpoint Blockade. Cancer Research, 2022, 82, 1340-1352.	0.9	11
3	Targeting Myc-driven stress vulnerability in mutant KRAS colorectal cancer. Molecular Biomedicine, 2022, 3, 10.	4.4	4
4	Glucose deprivationâ€induced endoplasmic reticulum stress response plays a pivotal role in enhancement of TRAIL cytotoxicity. Journal of Cellular Physiology, 2021, 236, 6666-6677.	4.1	11
5	Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene, 2021, 40, 2035-2050.	5.9	21
6	A novel immunochemotherapy based on targeting of cyclooxygenase and induction of immunogenic cell death. Biomaterials, 2021, 270, 120708.	11.4	14
7	Interferon Î ² drives intestinal regeneration after radiation. Science Advances, 2021, 7, eabi5253.	10.3	20
8	BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene, 2021, 40, 6566-6578.	5.9	14
9	Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188642.	7.4	13
10	Long noncoding RNA PiHL regulates p53 protein stability through GRWD1/RPL11/MDM2 axis in colorectal cancer. Theranostics, 2020, 10, 265-280.	10.0	44
11	Epigenetic Regulation of RIP3 Suppresses Necroptosis and Increases Resistance to Chemotherapy in NonSmall Cell Lung Cancer. Translational Oncology, 2020, 13, 372-382.	3.7	30
12	High Loading of Hydrophobic and Hydrophilic Agents via Small Immunostimulatory Carrier for Enhanced Tumor Penetration and Combinational Therapy. Theranostics, 2020, 10, 1136-1150.	10.0	24
13	Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188447.	7.4	97
14	Mcl-1 inhibition overcomes intrinsic and acquired Regorafenib resistance in Colorectal Cancer. Theranostics, 2020, 10, 8098-8110.	10.0	45
15	Immunogenic cell death in colon cancer prevention and therapy. Molecular Carcinogenesis, 2020, 59, 783-793.	2.7	65
16	miR-22 protect PC12 from ischemia/reperfusion-induced injury by targeting p53 upregulated modulator of apoptosis (PUMA). Bioengineered, 2020, 11, 209-218.	3.2	15
17	RIP1 promotes proliferation through G2/M checkpoint progression and mediates cisplatin-induced apoptosis and necroptosis in human ovarian cancer cells. Acta Pharmacologica Sinica, 2020, 41, 1223-1233.	6.1	18
18	Deletion of the Impg2 gene causes the degeneration of rod and cone cells in mice. Human Molecular Genetics, 2020, 29, 1624-1634.	2.9	14

#	Article	IF	CITATIONS
19	Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis. Nature Communications, 2020, 11, 1899.	12.8	60
20	eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. ELife, 2020, 9, .	6.0	19
21	Abstract 1763: NEO2734, a novel dual bromodomain and histone acetyltransferase inhibitor, in the treatment of colorectal cancer. , 2020, , .		0
22	Abstract 1622: Microsatellite instability causes colorectal cancer cell death to trigger anti-tumor immune response. , 2020, , .		0
23	Preparation of human hair keratin/calcium alginate blend films. Ferroelectrics, 2019, 547, 27-36.	0.6	Ο
24	BET Inhibitors Potentiate Chemotherapy and Killing of <i>SPOP</i> -Mutant Colon Cancer Cells via Induction of DR5. Cancer Research, 2019, 79, 1191-1203.	0.9	40
25	Vitamin D3 activates the autolysosomal degradation function against <i>Helicobacter pylori</i> through the PDIA3 receptor in gastric epithelial cells. Autophagy, 2019, 15, 707-725.	9.1	104
26	p53 Upâ€regulated Modulator of Apoptosis Induction Mediates Acetaminophenâ€Induced Necrosis and Liver Injury in Mice. Hepatology, 2019, 69, 2164-2179.	7.3	56
27	Colorectal cancer prevention: Immune modulation taking the stage. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 138-148.	7.4	53
28	The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice. Scientific Reports, 2018, 8, 2072.	3.3	17
29	Targeting p53-dependent stem cell loss for intestinal chemoprotection. Science Translational Medicine, 2018, 10, .	12.4	41
30	PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3930-3935.	7.1	121
31	Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene, 2018, 37, 4599-4610.	5.9	30
32	Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, Ripoptosome and autophagy mediated cell death pathway. Journal of Experimental and Clinical Cancer Research, 2018, 37, 53.	8.6	25
33	A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 97.	8.6	45
34	Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Research, 2018, 78, 4704-4715.	0.9	49
35	Immunogenic effects of chemotherapy-induced tumor cell death. Genes and Diseases, 2018, 5, 194-203.	3.4	219
36	Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells. Cancer Research. 2017. 77. 2512-2521.	0.9	118

#	Article	IF	CITATIONS
37	<i>FBW7</i> -Dependent Mcl-1 Degradation Mediates the Anticancer Effect of Hsp90 Inhibitors. Molecular Cancer Therapeutics, 2017, 16, 1979-1988.	4.1	57
38	Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncology Letters, 2017, 13, 5028-5034.	1.8	36
39	Erythrocyte Membrane-Wrapped pH Sensitive Polymeric Nanoparticles for Non-Small Cell Lung Cancer Therapy. Bioconjugate Chemistry, 2017, 28, 2591-2598.	3.6	46
40	The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 2017, 20, 1692-1704.	6.4	608
41	FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene, 2017, 36, 787-796.	5.9	134
42	Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway. BMC Pulmonary Medicine, 2017, 17, 191.	2.0	75
43	Co-targeting translation and proteasome rapidly kills colon cancer cells with mutant <i>RAS/RAF</i> via ER stress. Oncotarget, 2017, 8, 9280-9292.	1.8	11
44	Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/ <i>β</i> -Catenin Pathway. BioMed Research International, 2016, 2016, 1-11.	1.9	284
45	5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. , 2016, 4, 65.		100
46	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
47	Necroptosis: an alternative cell death program defending against cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 228-236.	7.4	104
48	Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumor Biology, 2016, 37, 653-659.	1.8	46
49	mTOR inhibitors induce apoptosis in colon cancer cells via CHOP-dependent DR5 induction on 4E-BP1 dephosphorylation. Oncogene, 2016, 35, 148-157.	5.9	74
50	Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice. Journal of Clinical Investigation, 2016, 126, 4076-4087.	8.2	77
51	<i>BRAFV600E</i> -dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget, 2016, 7, 47699-47710.	1.8	51
52	PUMA. , 2016, , 3849-3852.		0
53	Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. American Journal of Translational Research (discontinued), 2016, 8, 4120-4133.	0.0	40
54	Amphiphilic sugar poly(orthoesters) as pH-responsive nanoscopic assemblies for acidity-enhanced drug delivery and cell killing. Chemical Communications, 2015, 51, 13078-13081.	4.1	25

#	Article	IF	CITATIONS
55	Apelin-13 Attenuates Traumatic Brain Injury-Induced Damage by Suppressing Autophagy. Neurochemical Research, 2015, 40, 89-97.	3.3	52
56	Autophagy Mediates HBxâ€Induced Nuclear Factorâ€Î¤B Activation and Release of ILâ€6, ILâ€8, and CXCL2 in Hepatocytes. Journal of Cellular Physiology, 2015, 230, 2382-2389.	4.1	53
57	Loss of Caspase-3 sensitizes colon cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death and Disease, 2015, 6, e1729-e1729.	6.3	43
58	Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Scientific Reports, 2015, 5, 8566.	3.3	63
59	Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nature Communications, 2015, 6, 8305.	12.8	97
60	Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine, 2015, 22, 1079-1087.	5.3	58
61	Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes and Diseases, 2015, 2, 4-12.	3.4	94
62	Fibulin-5 inhibits Wnt/β-catenin signaling in lung cancer. Oncotarget, 2015, 6, 15022-15034.	1.8	47
63	Receptor Interactive Protein Kinase 3 Promotes Cisplatin-Triggered Necrosis in Apoptosis-Resistant Esophageal Squamous Cell Carcinoma Cells. PLoS ONE, 2014, 9, e100127.	2.5	34
64	MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma. Journal of Cancer, 2014, 5, 804-812.	2.5	36
65	Regorafenib Inhibits Colorectal Tumor Growth through PUMA-Mediated Apoptosis. Clinical Cancer Research, 2014, 20, 3472-3484.	7.0	93
66	lonizing irradiation induces acute haematopoietic syndrome and gastrointestinal syndrome independently in mice. Nature Communications, 2014, 5, 3494.	12.8	67
67	Fibulin-3 suppresses Wnt/ \hat{l}^2 -catenin signaling and lung cancer invasion. Carcinogenesis, 2014, 35, 1707-1716.	2.8	53
68	Role of Bcl-xL/Beclin-1 in interplay between apoptosis and autophagy in oxaliplatin and bortezomib-induced cell death. Biochemical Pharmacology, 2014, 88, 178-188.	4.4	51
69	BID mediates selective killing of APC-deficient cells in intestinal tumor suppression by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16520-16525.	7.1	24
70	Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell Death and Disease, 2014, 5, e1504-e1504.	6.3	48
71	A Functional Genomic Approach Identifies FAL1 as an Oncogenic Long Noncoding RNA that Associates with BMI1 and Represses p21 Expression in Cancer. Cancer Cell, 2014, 26, 344-357.	16.8	361
72	Aurora Kinase Inhibition Induces PUMA via NF-κB to Kill Colon Cancer Cells. Molecular Cancer Therapeutics, 2014, 13, 1298-1308.	4.1	30

#	Article	IF	CITATIONS
73	Synthesis of clickable amphiphilic polysaccharides as nanoscopic assemblies. Chemical Communications, 2014, 50, 12742-12745.	4.1	7
74	TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget, 2014, 5, 8107-8122.	1.8	27
75	PUMA. , 2014, , 1-5.		0
76	Role of Apoptosis in Colon Cancer Biology, Therapy, and Prevention. Current Colorectal Cancer Reports, 2013, 9, 331-340.	0.5	82
77	An apoptosis-independent role of SMAC in tumor suppression. Oncogene, 2013, 32, 2380-2389.	5.9	13
78	PEG-Farnesylthiosalicylate Conjugate as a Nanomicellar Carrier for Delivery of Paclitaxel. Bioconjugate Chemistry, 2013, 24, 464-472.	3.6	46
79	Crizotinib Induces PUMA-Dependent Apoptosis in Colon Cancer Cells. Molecular Cancer Therapeutics, 2013, 12, 777-786.	4.1	29
80	Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death and Differentiation, 2013, 20, 744-754.	11.2	38
81	Hsp90 Inhibitors Promote p53-Dependent Apoptosis through PUMA and Bax. Molecular Cancer Therapeutics, 2013, 12, 2559-2568.	4.1	46
82	ADAR1 is essential for intestinal homeostasis and stem cell maintenance. Cell Death and Disease, 2013, 4, e599-e599.	6.3	62
83	Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth. Oncogene, 2012, 31, 4848-4858.	5.9	63
84	Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model. Journal of Biomedical Optics, 2012, 17, 066014.	2.6	6
85	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
86	The Multi-Targeted Kinase Inhibitor Sunitinib Induces Apoptosis in Colon Cancer Cells via PUMA. PLoS ONE, 2012, 7, e43158.	2.5	35
87	p53/HMGB1 Complexes Regulate Autophagy and Apoptosis. Cancer Research, 2012, 72, 1996-2005.	0.9	220
88	p53 and PUMA Independently Regulate Apoptosis of Intestinal Epithelial Cells in Patients and Mice With Colitis. Gastroenterology, 2011, 141, 1036-1045.	1.3	65
89	Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. Journal of Ethnopharmacology, 2011, 137, 1373-1380.	4.1	47
90	Development of Small-Molecule PUMA Inhibitors for Mitigating Radiation-Induced Cell Death. Current Topics in Medicinal Chemistry, 2011, 11, 281-290.	2.1	57

#	Article	IF	CITATIONS
91	Catalase suppressionâ€mediated H ₂ O ₂ accumulation in cancer cells by wogonin effectively blocks tumor necrosis factorâ€induced NFâ€î®B activation and sensitizes apoptosis. Cancer Science, 2011, 102, 870-876.	3.9	39
92	PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology, 2011, 54, 1249-1258.	7.3	78
93	Following Cytochrome <i>c</i> Release, Autophagy Is Inhibited during Chemotherapy-Induced Apoptosis by Caspase 8–Mediated Cleavage of Beclin 1. Cancer Research, 2011, 71, 3625-3634.	0.9	134
94	Cleaving Beclin 1 to suppress autophagy in chemotherapy-induced apoptosis. Autophagy, 2011, 7, 1239-1241.	9.1	29
95	Uncoupling p53 Functions in Radiation-Induced Intestinal Damage via PUMA and p21. Molecular Cancer Research, 2011, 9, 616-625.	3.4	96
96	Role of Smac in Determining the Chemotherapeutic Response of Esophageal Squamous Cell Carcinoma. Clinical Cancer Research, 2011, 17, 5412-5422.	7.0	34
97	Smac Modulates Chemosensitivity in Head and Neck Cancer Cells through the Mitochondrial Apoptotic Pathway. Clinical Cancer Research, 2011, 17, 2361-2372.	7.0	23
98	PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. Journal of Clinical Investigation, 2011, 121, 1722-1732.	8.2	162
99	PUMA. , 2011, , 3122-3124.		0
100	Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose Î ³ -irradiation. Blood, 2010, 115, 3472-3480.	1.4	125
101	Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene, 2010, 29, 1622-1632.	5.9	120
102	IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death and Differentiation, 2010, 17, 699-709.	11.2	72
103	Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy. Journal of Biomedical Optics, 2010, 15, 066028.	2.6	43
104	p53 Up-regulated Modulator of Apoptosis (PUMA) Activation Contributes to Pancreatic β-Cell Apoptosis Induced by Proinflammatory Cytokines and Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2010, 285, 19910-19920.	3.4	108
105	Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20027-20032.	7.1	93
106	PUMA Induction by FoxO3a Mediates the Anticancer Activities of the Broad-Range Kinase Inhibitor UCN-01. Molecular Cancer Therapeutics, 2010, 9, 2893-2902.	4.1	60
107	Ligand-Independent Antiapoptotic Function of Estrogen Receptor-β in Lung Cancer Cells. Molecular Endocrinology, 2010, 24, 1737-1747.	3.7	62
108	An insight into statistical refractive index properties of cell internal structure via low-coherence statistical amplitude microscopy. Optics Express, 2010, 18, 21950.	3.4	18

#	Article	IF	CITATIONS
109	Fibulin-5 Suppresses Lung Cancer Invasion by Inhibiting Matrix Metalloproteinase-7 Expression. Cancer Research, 2009, 69, 6339-6346.	0.9	93
110	PUMA Suppresses Intestinal Tumorigenesis in Mice. Cancer Research, 2009, 69, 4999-5006.	0.9	44
111	Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle, 2009, 8, 3157-3164.	2.6	39
112	microRNA-21 Negatively Regulates Cdc25A and Cell Cycle Progression in Colon Cancer Cells. Cancer Research, 2009, 69, 8157-8165.	0.9	288
113	PUMA is directly activated by NF-κB and contributes to TNF-α-induced apoptosis. Cell Death and Differentiation, 2009, 16, 1192-1202.	11.2	147
114	PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene, 2009, 28, 2348-2357.	5.9	62
115	Transcriptional Regulation of Apoptosis. , 2009, , 239-260.		3
116	PUMA, a potent killer with or without p53. Oncogene, 2008, 27, S71-S83.	5.9	466
117	Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochemical Pharmacology, 2008, 75, 2020-2033.	4.4	119
118	PUMA Regulates Intestinal Progenitor Cell Radiosensitivity and Gastrointestinal Syndrome. Cell Stem Cell, 2008, 2, 576-583.	11.1	199
119	Anti-cancer Effects of JKA97 Are Associated with Its Induction of Cell Apoptosis via a Bax-dependent and p53-independent Pathway. Journal of Biological Chemistry, 2008, 283, 8624-8633.	3.4	37
120	Selection against <i>PUMA</i> Gene Expression in Myc-Driven B-Cell Lymphomagenesis. Molecular and Cellular Biology, 2008, 28, 5391-5402.	2.3	130
121	NSAIDs Downregulate Bcl-X _L and Dissociate BAX and Bcl-X _L to Induce Apoptosis in Colon Cancer Cells. Nutrition and Cancer, 2008, 60, 98-103.	2.0	17
122	PINCH-1 Regulates the ERK-Bim Pathway and Contributes to Apoptosis Resistance in Cancer Cells. Journal of Biological Chemistry, 2008, 283, 2508-2517.	3.4	67
123	Downregulation of Dkk3 activates β-catenin/TCF-4 signaling in lung cancer. Carcinogenesis, 2008, 29, 84-92.	2.8	145
124	Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis, 2008, 29, 1878-1884.	2.8	73
125	SMAC Mimetics Sensitize Nonsteroidal Anti-inflammatory Drug–Induced Apoptosis by Promoting Caspase-3–Mediated Cytochrome <i>c</i> Release. Cancer Research, 2008, 68, 276-284.	0.9	33
126	Frequent Inactivation of <i>RAMP2, EFEMP1</i> and <i>Dutt1</i> in Lung Cancer by Promoter Hypermethylation. Clinical Cancer Research, 2007, 13, 4336-4344.	7.0	81

#	Article	IF	CITATIONS
127	p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut, 2007, 56, 645-654.	12.1	89
128	A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Molecular Cancer Therapeutics, 2007, 6, 1062-1069.	4.1	80
129	The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4054-4059.	7.1	143
130	BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resistance Updates, 2007, 10, 207-217.	14.4	118
131	SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene, 2007, 26, 4189-4198.	5.9	74
132	Regulation of PUMA- \hat{l} ± by p53 in cisplatin-induced renal cell apoptosis. Oncogene, 2006, 25, 4056-4066.	5.9	184
133	Administration of PUMA adenovirus increases the sensitivity of esophageal cancer cells to anticancer drugs. Cancer Biology and Therapy, 2006, 5, 380-385.	3.4	38
134	PUMA Sensitizes Lung Cancer Cells to Chemotherapeutic Agents and Irradiation. Clinical Cancer Research, 2006, 12, 2928-2936.	7.0	97
135	PUMA Dissociates Bax and Bcl-XL to Induce Apoptosis in Colon Cancer Cells. Journal of Biological Chemistry, 2006, 281, 16034-16042.	3.4	158
136	The transcriptional targets of p53 in apoptosis control. Biochemical and Biophysical Research Communications, 2005, 331, 851-858.	2.1	691
137	SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16897-16902.	7.1	68
138	Sulforaphane-induced G2/M Phase Cell Cycle Arrest Involves Checkpoint Kinase 2-mediated Phosphorylation of Cell Division Cycle 25C. Journal of Biological Chemistry, 2004, 279, 25813-25822.	3.4	317
139	Apoptosis in human cancer cells. Current Opinion in Oncology, 2004, 16, 19-24.	2.4	84
140	No PUMA, no death. Cancer Cell, 2003, 4, 248-249.	16.8	181
141	A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 2003, 425, 407-410.	27.8	1,322
142	PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1931-1936.	7.1	531
143	Screening Poly [dA/dT(-)] cDNA for Gene Identification. , 2003, 221, 197-206.		0
144	Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biology and Therapy, 2003, 2, 694-9.	3.4	42

#	Article	IF	CITATIONS
145	Single‧perm Typing. Current Protocols in Human Genetics, 2002, 32, Unit 1.6.	3.5	5
146	PUMA Induces the Rapid Apoptosis of Colorectal Cancer Cells. Molecular Cell, 2001, 7, 673-682.	9.7	1,162
147	Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. British Journal of Psychiatry, 2001, 178, s137-s141.	2.8	61
148	The mRNA of L-Type Calcium Channel Elevated in Colon Cancer. American Journal of Pathology, 2000, 157, 1549-1562.	3.8	102
149	Role of <i>BAX</i> in the Apoptotic Response to Anticancer Agents. Science, 2000, 290, 989-992.	12.6	843
150	Identification and classification of p53-regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14517-14522.	7.1	424
151	Analysis of human transcriptomes. Nature Genetics, 1999, 23, 387-388.	21.4	719
152	The mutation properties of spinal and bulbar muscular atrophy disease alleles. Neurogenetics, 1998, 1, 249-252.	1.4	9
153	Is a p53-Regulated Inhibitor of G2/M Progression. Molecular Cell, 1997, 1, 3-11.	9.7	1,153
154	Characterization of the Yeast Transcriptome. Cell, 1997, 88, 243-251.	28.9	1,009
155	CAG repeat length variation in sperm from a patient with Kennedy's disease. Human Molecular Genetics, 1995, 4, 303-305.	2.9	55
156	Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell, 1995, 82, 309-319.	28.9	512
157	Serial Analysis of Gene Expression. Science, 1995, 270, 484-487.	12.6	3,976
158	Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum. Human Molecular Genetics, 1995, 4, 1519-1526.	2.9	180
159	Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nature Genetics, 1994, 7, 531-535.	21.4	116
160	Whole genome amplification from a single cell: implications for genetic analysis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5847-5851.	7.1	861