Takashi Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189639/publications.pdf Version: 2024-02-01

ΤΛΚΛΩΗΙ ΤΛΝΙΟΠΟΗΙ

#	Article	IF	CITATIONS
1	Viscoelastic phase separation model for ternary polymer solutions. Journal of Chemical Physics, 2021, 154, 104903.	3.0	7
2	Multiscale Simulation of the Flows of a Bidisperse Entangled Polymer Melt. Nihon Reoroji Gakkaishi, 2021, 49, 87-95.	1.0	4
3	Select Applications of Bayesian Data Analysis and Machine Learning to Flow Problems. Nihon Reoroji Gakkaishi, 2021, 49, 97-113.	1.0	4
4	Studies on Dynamics of Flexible Fibers in a Binary Fluid. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 55-63.	0.0	0
5	Machine Learning for the Flow Prediction of Fluids with Memory Effects on the Stress. Japanese Journal of Multiphase Flow, 2021, 35, 426-436.	0.3	0
6	Structural and Dynamical Roles of Bound Polymer Chains in Rubber Reinforcement. Macromolecules, 2021, 54, 11032-11046.	4.8	17
7	Generalized Protein-Repellent Properties of Ultrathin Homopolymer Films. Macromolecules, 2020, 53, 6547-6554.	4.8	5
8	Eulerian/Lagrangian formulation for the elasto-capillary deformation of a flexible fibre. Journal of Computational Physics, 2020, 409, 109324.	3.8	8
9	Viscosity Landscape of Phase-Separated Lipid Membrane Estimated from Fluid Velocity Field. Biophysical Journal, 2020, 118, 1576-1587.	0.5	18
10	Learning the constitutive relation of polymeric flows with memory. Physical Review Research, 2020, 2,	3.6	15
11	Flow induced by an oscillating sphere in probing complex viscosity of polymer solutions. Physical Review Fluids, 2020, 5, .	2.5	2
12	Rheology and Entanglement Structure of Well-Entangled Polymer Melts: A Slip-Link Simulation Study. Macromolecules, 2019, 52, 3951-3964.	4.8	10
13	Multiscale Simulations of Flows of a Well-Entangled Polymer Melt in a Contraction–Expansion Channel. Macromolecules, 2019, 52, 547-564.	4.8	18
14	Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids. Physical Review E, 2018, 97, 032611.	2.1	3
15	Interphase Structures and Dynamics near Nanofiller Surfaces in Polymer Solutions. Macromolecules, 2018, 51, 9462-9470.	4.8	21
16	Nonlinear Viscoelasticity of Highly Ordered, Two-Dimensional Assemblies of Metal Nanoparticles Confined at the Air/Water Interface. Langmuir, 2018, 34, 13025-13034.	3.5	4
17	Diffuse interface model to simulate the rise of a fluid droplet across a cloud of particles. Physical Review Fluids, 2018, 3, .	2.5	8
18	Multiscale simulations for entangled polymer melt spinning process. Journal of Non-Newtonian Fluid Mechanics, 2017, 241, 34-42.	2.4	24

Таказні Талідисні

#	Article	IF	CITATIONS
19	Direct numerical simulation of an arbitrarily shaped particle at a fluidic interface. Physical Review E, 2017, 95, 063107.	2.1	6
20	Multiscale Simulation of Polymer Melt Spinning by Using the Dumbbell Model. Nihon Reoroji Gakkaishi, 2017, 44, 265-280.	1.0	10
21	The Photopolymer Science and Technology Award. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 7-11.	0.3	0
22	Multiscale Simulation of Polymeric Liquid Flows. Seikei-Kakou, 2017, 29, 52-56.	0.0	0
23	Direct numerical simulation of a particle attachment to an immersed bubble. Physics of Fluids, 2016, 28, .	4.0	17
24	Nanostructures and Dynamics of Macromolecules Bound to Attractive Filler Surfaces. ACS Macro Letters, 2015, 4, 838-842.	4.8	51
25	Depletion and the dynamics in colloid–polymer mixtures. Current Opinion in Colloid and Interface Science, 2015, 20, 66-70.	7.4	24
26	Multiscale DSA simulations for efficient hotspot analysis. , 2014, , .		2
27	Stochastic interactions of two Brownian hard spheres in the presence of depletants. Journal of Chemical Physics, 2014, 140, 214906.	3.0	3
28	Nanoporous structure of the cell walls of polycarbonate foams. Journal of Materials Science, 2014, 49, 2605-2617.	3.7	30
29	Freezing of stressed bilayers and vesicles. Soft Matter, 2014, 10, 257-261.	2.7	4
30	Coarse-Grained Computational Studies of Supported Bilayers: Current Problems and Their Root Causes. Journal of Physical Chemistry B, 2014, 118, 10643-10652.	2.6	14
31	Tubular Membrane Formation of Binary Giant Unilamellar Vesicles Composed of Cylinder and Inverse-Cone-Shaped Lipids. Biophysical Journal, 2013, 105, 2074-2081.	0.5	14
32	Multiscale Modeling for Polymeric Flow: Particle-Fluid Bridging Scale Methods. Journal of the Physical Society of Japan, 2013, 82, 012001.	1.6	17
33	2P205 Main phase transition of asymmetric lipid bilayers(13A. Biological & Artifical membrane:) Tj ETQq1 1	0.784314 0.1	- rgBT /Overl
34	Large-Scale Simulations of Directed Self-Assembly with Simplified Model. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 809-816.	0.3	12
35	Electrostatic Potential around a Charged Colloidal Particle in an Electrolyte Solution with Ion Strong Coupling. Journal of the Physical Society of Japan, 2012, 81, 024803.	1.6	3
36	Flow-History-Dependent Behavior of Entangled Polymer Melt Flow Analyzed by Multiscale Simulation. Journal of the Physical Society of Japan, 2012, 81, SA013.	1.6	15

Τακαςμι Τανισμικι

#	Article	IF	CITATIONS
37	Two-dimensional lattice liquid models. Physical Review E, 2012, 86, 031124.	2.1	1
38	Revealed Architectures of Adsorbed Polymer Chains at Solid-Polymer Melt Interfaces. Physical Review Letters, 2012, 109, 265501.	7.8	219
39	Directed self-assembly of nanoparticles at the polymer surface by highly compressible supercritical carbon dioxide. Soft Matter, 2011, 7, 9231.	2.7	10
40	Numerical investigations of the dynamics of two-component vesicles. Journal of Physics Condensed Matter, 2011, 23, 284103.	1.8	10
41	Computer simulation study on the shear-induced phase separation in semi-dilute polymer solutions by using lanniruberto–Marrucci model. Polymer, 2010, 51, 1853-1860.	3.8	3
42	Multiscale Lagrangian fluid dynamics simulation for polymeric fluid. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 886-893.	2.1	27
43	Discharge behaviors and jet profiles during electrospinning of poly(vinyl alcohol). Polymer Engineering and Science, 2010, 50, 1788-1796.	3.1	13
44	Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids. Biophysical Journal, 2010, 99, 472-479.	0.5	49
45	Periodic modulation of tubular vesicles induced by phase separation. Physical Review E, 2010, 82, 051928.	2.1	29
46	Electric Field Induced Surface Profile Change of Liquid Film on a Periodically Aligned Electrode Array. Nihon Reoroji Gakkaishi, 2010, 38, 81-86.	1.0	1
47	Elongational behavior of epoxy during curing. Journal of Applied Polymer Science, 2009, 114, 1018-1024.	2.6	1
48	Relation between tacticity and fiber diameter in melt-electrospinning of polypropylene. Fibers and Polymers, 2009, 10, 275-279.	2.1	34
49	Rheology and morphology change with temperature of SEBS/hydrocarbon oil blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 955-965.	2.1	27
50	Melt rheology of hyperbranchedâ€polystyrene synthesized with multisite macromonomer. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2226-2237.	2.1	16
51	Self-Consistent Field Theory and Density Functional Theory for Self-Organization in Polymeric Systems. Journal of the Physical Society of Japan, 2009, 78, 041009.	1.6	4
52	Relation between Spinning Conditions and Jet Profile in Electrospinning. Seikei-Kakou, 2009, 21, 627-632.	0.0	3
53	The effect of 1,3:2,4-bis-O-(p-methylbenzylidene)-d-sorbitol (PDTS) on uniaxial elongational viscosity of polypropylene. Rheologica Acta, 2008, 47, 237-242.	2.4	3
54	Effect of rheological behavior of epoxy during precuring on foaming. Journal of Applied Polymer Science, 2008, 110, 657-662.	2.6	42

Τακαςμι Τανισμικι

#	Article	IF	CITATIONS
55	Shape Deformation of Vesicle Coupled with Phase Separation. Progress of Theoretical Physics Supplement, 2008, 175, 71-80.	0.1	2
56	Shape Deformation of Ternary Vesicles Coupled with Phase Separation. Physical Review Letters, 2008, 100, 148102.	7.8	183
57	Nanoparticle Retardation in Semidilute Polymer Solutions. AIP Conference Proceedings, 2008, , .	0.4	3
58	2S8-4 Shape deformation of ternary vesicles coupled with phase separation(2S8 Giant Liposome) Tj ETQq0 0 0 r 2008, 48, S13.	gBT /Over 0.1	ock 10 Tf 50 0
59	Effect of Viscosity of an Epoxy near or over Its Gel Point on Foaming Structures. AIP Conference Proceedings, 2008, , .	0.4	1
60	Computer Simulation Study on the Shear-Induced Phase Separation in Semi-Dilute Polymer Solutions by Using lanniruberto-Marrucci Model. Kobunshi Ronbunshu, 2007, 64, 324-327.	0.2	1
61	Storage Modulus of Poly(vinyl alcohol) Gels Loaded with Polyelectrolyte Particles. E-Polymers, 2007, 7, .	3.0	0
62	Rheological properties of poly(vinyl chloride)/plasticizer systems—relation between sol–gel transition and elongational viscosity. Rheologica Acta, 2007, 46, 957-964.	2.4	27
63	Acceleration Mechanism of Growth Rates under Shear Flow Due to the Oriented Meltâ~'The Novel Morphology of Spiral Crystal (Spiralite)â~'. Macromolecules, 2006, 39, 1515-1524.	4.8	12
64	Computer simulation study on the shear-induced phase separation in semidilute polymer solutions in 3-dimensional space. Polymer, 2006, 47, 7846-7852.	3.8	7
65	Melt rheology of long-chain-branched polypropylenes. Rheologica Acta, 2006, 46, 33-44.	2.4	83
66	Uniaxial Elongational Viscosity of PC/ A Small Amount of PTFE Blend. Nihon Reoroji Gakkaishi, 2005, 33, 173-182.	1.0	8
67	Polymer depletion-induced slip near an interface. Journal of Physics Condensed Matter, 2005, 17, L9-L14.	1.8	44
68	The simulation of the swelling and deswelling dynamics of gels. Molecular Physics, 2004, 102, 167-172.	1.7	6
69	Self-Consistent Field Theory of Polyelectrolyte Systems. Journal of Physical Chemistry B, 2004, 108, 6733-6744.	2.6	121
70	Theoretical and Numerical Studies on Viscoelastic Effect in Phase Separation of Polymeric Systems. Nihon Reoroji Gakkaishi, 2004, 32, 27-32.	1.0	1
71	Improvement of Mechanical Properties for Poly (L-lactic acid) Film through Drawing Process Optimization. Journal of Fiber Science and Technology, 2004, 60, 230-234.	0.0	2
72	Ultrasonic Investigations of Hydrogels Containing Barium Ferrite Particles. Journal of Physical Chemistry B, 2003, 107, 5426-5431.	2.6	21

Таказні Талідисні

#	Article	lF	CITATIONS
73	Mechanical Properties of Poly (L-lactic acid)/Biodegradable Polyester Blend Films. Seikei-Kakou, 2003, 15, 581-587.	0.0	10
74	Viscoelastic effects in early stage phase separation in polymeric systems. Journal of Chemical Physics, 1997, 106, 5761-5770.	3.0	71
75	Phase Separation in Polymer Solutions Induced by Shear. Journal De Physique II, 1997, 7, 295-304.	0.9	36
76	Network Domain Structure in Viscoelastic Phase Separation. Physical Review Letters, 1996, 77, 4910-4913.	7.8	110
77	Shape Deformation and Phase Separation Dynamics of Two-Component Vesicles. Physical Review Letters, 1996, 76, 4444-4447.	7.8	168
78	Phase transitions and shapes of two component membranes and vesicles II : weak segregation limit. Journal De Physique II, 1994, 4, 1333-1362.	0.9	67
79	Phase transitions and shapes of two component membranes and vesicles I: strong segregation limit. Journal De Physique II, 1993, 3, 971-997.	0.9	82
80	Concentration profile of polymers near a spherical surface. AIP Conference Proceedings, 1992, , .	0.4	9