Anthony H Futerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187406/publications.pdf

Version: 2024-02-01

233 papers

16,026 citations

14655 66 h-index 117 g-index

240 all docs

240 docs citations

240 times ranked

14165 citing authors

#	Article	IF	CITATIONS
1	Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Molecular Therapy, 2022, 30, 1661-1674.	8.2	9
2	GBA mutations, glucosylceramide and Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 148-154.	4.2	23
3	16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. IScience, 2022, 25, 103551.	4.1	8
4	Laurdan in live cell imaging: Effect of acquisition settings, cell culture conditions and data analysis on generalized polarization measurements. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112404.	3.8	8
5	Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and -6 in chemoresistant renal cancer. Journal of Biological Chemistry, 2022, 298, 101492.	3.4	6
6	A novel C-terminal DxRSDxE motif in ceramide synthases involved in dimer formation. Journal of Biological Chemistry, 2022, 298, 101517.	3.4	12
7	Fatty acid transport protein 2 interacts with ceramide synthase 2 to promote ceramide synthesis. Journal of Biological Chemistry, 2022, 298, 101735.	3.4	9
8	A Storm in a Primordial Teacup. Inference, 2022, 7, .	0.0	0
9	Generation of a ceramide synthase 6 mouse lacking the DDRSDIE C-terminal motif. PLoS ONE, 2022, 17, e0271675.	2.5	0
10	Brain pathology and cerebellar purkinje cell loss in a mouse model of chronic neuronopathic Gaucher disease. Progress in Neurobiology, 2021, 197, 101939.	5.7	6
11	Substrate reduction therapy using Genzâ€667161 reduces levels of pathogenic components in a mouse model of neuronopathic forms of Gaucher disease. Journal of Neurochemistry, 2021, 156, 692-701.	3.9	16
12	Ceramide Synthase 2 Null Mice Are Protected from Ovalbumin-Induced Asthma with Higher T Cell Receptor Signal Strength in CD4+ T Cells. International Journal of Molecular Sciences, 2021, 22, 2713.	4.1	11
13	The fineâ€tuning of cell membrane lipid bilayers accentuates their compositional complexity. BioEssays, 2021, 43, e2100021.	2.5	15
14	Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cellular Signalling, 2021, 82, 109958.	3.6	19
15	Biophysical impact of sphingosine and other abnormal lipid accumulation in Niemann-Pick disease type C cell models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158944.	2.4	1
16	The role of the â€~sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183701.	2.6	10
17	The Complex Tail of Circulating Sphingolipids in Atherosclerosis and Cardiovascular Disease. Journal of Lipid and Atherosclerosis, 2021, 10, 268.	3.5	10
18	Sphingolipids. , 2021, , 281-316.		5

#	Article	IF	CITATIONS
19	Ceramide synthase 2 deletion decreases the infectivity of HIV-1. Journal of Biological Chemistry, 2021, 296, 100340.	3.4	15
20	Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet Journal of Rare Diseases, 2021, 16, 39.	2.7	11
21	The role of ceramide in regulating endoplasmic reticulum function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158489.	2.4	29
22	Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 4966.	4.1	21
23	Different rates of flux through the biosynthetic pathway for long-chain versus very-long-chain sphingolipids. Journal of Lipid Research, 2020, 61, 1341-1346.	4.2	9
24	Mice defective in interferon signaling help distinguish between primary and secondary pathological pathways in a mouse model of neuronal forms of Gaucher disease. Journal of Neuroinflammation, 2020, 17, 265.	7.2	10
25	Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathologica Communications, 2020, 8, 144.	5.2	8
26	Integrin Alpha E (CD103) Limits Virus-Induced IFN-I Production in Conventional Dendritic Cells. Frontiers in Immunology, 2020, 11, 607889.	4.8	1
27	The Lysosome and Nonmotor Symptoms: Linking Parkinson's Disease and Lysosomal Storage Disorders. Movement Disorders, 2020, 35, 2150-2155.	3.9	5
28	Absence of infiltrating peripheral myeloid cells in the brains of mouse models of lysosomal storage disorders. Journal of Neurochemistry, 2019, 148, 625-638.	3.9	20
29	Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Experimental and Molecular Medicine, 2019, 51, 1-16.	7.7	51
30	Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. Journal of Cell Science, 2019, 132, .	2.0	26
31	TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biology, 2019, 17, e3000169.	5.6	24
32	Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher's disease. Neurobiology of Disease, 2019, 127, 563-569.	4.4	19
33	<i>InÂvivo</i> inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activityâ€based protein profiling. FEBS Journal, 2019, 286, 584-600.	4.7	44
34	A Stroll Down the CerS Lane. Advances in Experimental Medicine and Biology, 2019, 1159, 49-63.	1.6	32
35	The Cell Biology of SARS-CoV-2. Inference, 2019, 5, .	0.0	4
36	Eleven residues determine the acyl chain specificity of ceramide synthases. Journal of Biological Chemistry, 2018, 293, 9912-9921.	3.4	50

#	Article	IF	CITATIONS
37	The brain lipidome in neurodegenerative lysosomal storage disorders. Biochemical and Biophysical Research Communications, 2018, 504, 623-628.	2.1	20
38	Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure. FASEB Journal, 2018, 32, 1880-1890.	0.5	59
39	Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Human Molecular Genetics, 2018, 27, 2725-2738.	2.9	22
40	Altered lysosome distribution is an early neuropathological event in neurological forms of Gaucher disease. FEBS Letters, 2017, 591, 774-783.	2.8	20
41	Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase. Journal of Lipid Research, 2017, 58, 1500-1513.	4.2	18
42	Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell Death and Differentiation, 2017, 24, 1288-1302.	11.2	67
43	Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein. Journal of Biological Chemistry, 2017, 292, 7588-7597.	3.4	35
44	Identification of a feedback loop involving \hat{l}^2 -glucosidase 2 and its product sphingosine sheds light on the molecular mechanisms in Gaucher disease. Journal of Biological Chemistry, 2017, 292, 6177-6189.	3.4	22
45	Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. Journal of Cell Science, 2017, 130, 1486-1493.	2.0	15
46	Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Physical Chemistry Chemical Physics, 2017, 19, 340-346.	2.8	28
47	The metabolism of glucocerebrosides â€" From 1965 to the present. Molecular Genetics and Metabolism, 2017, 120, 22-26.	1.1	28
48	Ablation of ceramide synthase 2 exacerbates dextran sodium sulphateâ€induced colitis in mice due to increased intestinal permeability. Journal of Cellular and Molecular Medicine, 2017, 21, 3565-3578.	3.6	22
49	Combining Deep Sequencing, Proteomics, Phosphoproteomics, and Functional Screens To Discover Novel Regulators of Sphingolipid Homeostasis. Journal of Proteome Research, 2017, 16, 571-582.	3.7	11
50	Sortilin Deficiency Reduces Ductular Reaction, Hepatocyte Apoptosis, and Liver Fibrosis in Cholestatic-Induced Liver Injury. American Journal of Pathology, 2017, 187, 122-133.	3.8	24
51	Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology, 2017, 42, 951-962.	5.4	9
52	Critical Role for Very-Long Chain Sphingolipids in Invariant Natural Killer T Cell Development and Homeostasis. Frontiers in Immunology, 2017, 8, 1386.	4.8	19
53	Induction of the type I interferon response in neurological forms of Gaucher disease. Journal of Neuroinflammation, 2016, 13, 104.	7.2	53
54	Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. Journal of Pathology, 2016, 239, 496-509.	4.5	54

#	Article	IF	CITATIONS
55	Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cellular Signalling, 2016, 28, 946-955.	3.6	37
56	Identification of Modifier Genes in a Mouse Model of Gaucher Disease. Cell Reports, 2016, 16, 2546-2553.	6.4	52
57	Making Sense of the Yeast Sphingolipid Pathway. Journal of Molecular Biology, 2016, 428, 4765-4775.	4.2	41
58	Perspective: Finding common ground. Nature, 2016, 537, S160-S161.	27.8	14
59	K Ca 3.1 upregulation preserves endotheliumâ€dependent vasorelaxation during aging and oxidative stress. Aging Cell, 2016, 15, 801-810.	6.7	15
60	Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane. Biophysical Journal, 2016, 110, 612-622.	0.5	24
61	Ceramide synthases in biomedical research. Chemistry and Physics of Lipids, 2016, 197, 25-32.	3.2	45
62	Sphingolipids. , 2016, , 297-326.		8
63	Altering sphingolipid composition with aging induces contractile dysfunction of gastric smooth muscle via <scp>K_C</scp> _a 1.1 upregulation. Aging Cell, 2015, 14, 982-994.	6.7	22
64	Identification of a Biomarker in Cerebrospinal Fluid for Neuronopathic Forms of Gaucher Disease. PLoS ONE, 2015, 10, e0120194.	2.5	53
65	A rapid ceramide synthase activity using NBD-sphinganine and solid phase extraction. Journal of Lipid Research, 2015, 56, 193-199.	4.2	22
66	Development of pheochromocytoma in ceramide synthase 2 null mice. Endocrine-Related Cancer, 2015, 22, 623-632.	3.1	27
67	LPSâ€mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFαâ€converting enzyme. FEBS Letters, 2015, 589, 2213-2217.	2.8	27
68	Innate immune responses in the brain of sphingolipid lysosomal storage diseases. Biological Chemistry, 2015, 396, 659-667.	2.5	23
69	Preface to the Special Issue on brain lipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 997-998.	2.4	1
70	Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain, Behavior, and Immunity, 2015, 46, 280-292.	4.1	53
71	Sortilin deficiency improves the metabolic phenotype and reduces hepatic steatosis of mice subjected to diet-induced obesity. Journal of Hepatology, 2015, 62, 175-181.	3.7	59
72	Emerging therapeutic targets for Gaucher disease. Expert Opinion on Therapeutic Targets, 2015, 19, 321-334.	3.4	18

#	Article	IF	CITATIONS
73	Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5682-5687.	7.1	86
74	The HIV-1 Envelope Transmembrane Domain Binds TLR2 through a Distinct Dimerization Motif and Inhibits TLR2-Mediated Responses. PLoS Pathogens, 2014, 10, e1004248.	4.7	33
75	Sphingoid long chain bases prevent lung infection by <i>Pseudomonas aeruginosa</i> . EMBO Molecular Medicine, 2014, 6, 1205-1214.	6.9	109
76	Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Annals of Clinical and Translational Neurology, 2014, 1, 88-98.	3.7	50
77	Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 671-681.	2.4	183
78	Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Human Molecular Genetics, 2014, 23, 843-854.	2.9	123
79	From sheep to mice to cells: Tools for the study of the sphingolipidoses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1189-1199.	2.4	16
80	Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1754-1766.	2.4	50
81	RIPK3 as a potential therapeutic target for Gaucher's disease. Nature Medicine, 2014, 20, 204-208.	30.7	147
82	CerS2 Haploinsufficiency Inhibits \hat{l}^2 -Oxidation and Confers Susceptibility to Diet-Induced Steatohepatitis and Insulin Resistance. Cell Metabolism, 2014, 20, 687-695.	16.2	379
83	Influence of Intracellular Membrane pH on Sphingolipid Organization and Membrane Biophysical Properties. Langmuir, 2014, 30, 4094-4104.	3.5	12
84	A Dynamic Interface between Vacuoles and Mitochondria in Yeast. Developmental Cell, 2014, 30, 95-102.	7.0	321
85	Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. Journal of Lipid Research, 2014, 55, 53-61.	4.2	51
86	A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2099-2110.	2.6	38
87	Neuronal Forms of Gaucher Disease. Handbook of Experimental Pharmacology, 2013, , 405-419.	1.8	45
88	The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2511-2518.	4.1	136
89	Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1122-1130.	2.6	32
90	Identification of <i> <scp>N</scp> </i> â€acylâ€fumonisin <scp>B</scp> 1 as new cytotoxic metabolites of fumonisin mycotoxins. Molecular Nutrition and Food Research, 2013, 57, 516-522.	3.3	38

#	Article	IF	Citations
91	Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology, 2013, 57, 525-532.	7.3	140
92	Accumulation of Ordered Ceramide-Cholesterol Domains in Farber Disease Fibroblasts. JIMD Reports, 2013, 12, 71-77.	1.5	14
93	The Yeast P5 Type ATPase, Spf1, Regulates Manganese Transport into the Endoplasmic Reticulum. PLoS ONE, 2013, 8, e85519.	2.5	62
94	Impaired Epidermal Ceramide Synthesis Causes Autosomal Recessive Congenital Ichthyosis and Reveals the Importance of Ceramide Acyl Chain Length. Journal of Investigative Dermatology, 2013, 133, 2202-2211.	0.7	138
95	Myristate-derived d16:0 Sphingolipids Constitute a Cardiac Sphingolipid Pool with Distinct Synthetic Routes and Functional Properties. Journal of Biological Chemistry, 2013, 288, 13397-13409.	3.4	63
96	Protection of a Ceramide Synthase 2 Null Mouse from Drug-induced Liver Injury. Journal of Biological Chemistry, 2013, 288, 30904-30916.	3.4	35
97	Ablation of Ceramide Synthase 2 Causes Chronic Oxidative Stress Due to Disruption of the Mitochondrial Respiratory Chain. Journal of Biological Chemistry, 2013, 288, 4947-4956.	3.4	165
98	Ceramide Synthases Expression and Role of Ceramide Synthase-2 in the Lung: Insight from Human Lung Cells and Mouse Models. PLoS ONE, 2013, 8, e62968.	2.5	69
99	Oxidized Phospholipids Induce Ceramide Accumulation in RAW 264.7 Macrophages: Role of Ceramide Synthases. PLoS ONE, 2013, 8, e70002.	2.5	36
100	Lysosomal storage disorders: old diseases, present and future challenges. Pediatric Endocrinology Reviews, 2013, 11 Suppl 1, 59-63.	1.2	12
101	Acyl Chain Specificity of Ceramide Synthases Is Determined within a Region of 150 Residues in the Tram-Lag-CLN8 (TLC) Domain. Journal of Biological Chemistry, 2012, 287, 3197-3206.	3.4	60
102	Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher's disease. Brain, 2012, 135, 1724-1735.	7.6	132
103	Modulation of Ceramide Synthase Activity via Dimerization. Journal of Biological Chemistry, 2012, 287, 21025-21033.	3.4	98
104	Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2012, 287, 24397-24411.	3.4	29
105	Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. Journal of Lipid Research, 2012, 53, 430-436.	4.2	62
106	Ceramide Kinase-Like (CERKL) Interacts with Neuronal Calcium Sensor Proteins in the Retina in a Cation-Dependent Manner., 2012, 53, 4565.		15
107	Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cellular Microbiology, 2012, 14, 500-516.	2.1	67
108	Comparison of a molecular dynamics model with the X-ray structure of the N370S acid-Â-glucosidase mutant that causes Gaucher disease. Protein Engineering, Design and Selection, 2011, 24, 773-775.	2.1	13

#	Article	IF	CITATIONS
109	Self-Segregation of Myelin Membrane Lipids in Model Membranes. Biophysical Journal, 2011, 101, 2713-2720.	0.5	38
110	Animal models for Gaucher disease research. DMM Disease Models and Mechanisms, 2011, 4, 746-752.	2.4	80
111	Effect of ceramide structure on membrane biophysical properties: The role of acyl chain length and unsaturation. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2753-2760.	2.6	172
112	Intracellular localization of organized lipid domains of C16-ceramide/cholesterol. Journal of Structural Biology, 2011, 175, 21-30.	2.8	17
113	Cyclodextrin-mediated crystallization of acid \hat{l}^2 -glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Organic and Biomolecular Chemistry, 2011, 9, 4160.	2.8	31
114	Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Movement Disorders, 2011, 26, 1593-1604.	3.9	141
115	Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Human Molecular Genetics, 2011, 20, 1375-1386.	2.9	93
116	Encephalopathy Caused by Ablation of Very Long Acyl Chain Ceramide Synthesis May Be Largely Due to Reduced Galactosylceramide Levels. Journal of Biological Chemistry, 2011, 286, 30022-30033.	3.4	71
117	The Role of the Ceramide Acyl Chain Length in Neurodegeneration: Involvement of Ceramide Synthases. NeuroMolecular Medicine, 2010, 12, 341-350.	3.4	128
118	Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Experimental Cell Research, 2010, 316, 78-91.	2.6	39
119	Mammalian ceramide synthases. IUBMB Life, 2010, 62, 347-356.	3.4	377
120	The plasma membrane code. Nature Chemical Biology, 2010, 6, 487-488.	8.0	4
121	A Critical Role for Ceramide Synthase 2 in Liver Homeostasis. Journal of Biological Chemistry, 2010, 285, 10911-10923.	3.4	200
122	Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Human Molecular Genetics, 2010, 19, 3583-3590.	2.9	76
123	A Critical Role for Ceramide Synthase 2 in Liver Homeostasis. Journal of Biological Chemistry, 2010, 285, 10902-10910.	3.4	213
124	Cellular pathogenesis in sphingolipid storage disorders: the quest for new therapeutic approaches. Clinical Lipidology, 2010, 5, 255-265.	0.4	3
125	Molecular Basis of Reduced Glucosylceramidase Activity in the Most Common Gaucher Disease Mutant, N370S. Journal of Biological Chemistry, 2010, 285, 42105-42114.	3.4	31
126	Common and Uncommon Pathogenic Cascades in Lysosomal Storage Diseases. Journal of Biological Chemistry, 2010, 285, 20423-20427.	3.4	298

#	Article	IF	CITATIONS
127	Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochemical and Biophysical Research Communications, 2010, 391, 219-223.	2.1	70
128	Characterization of gene-activated human acid-Â-glucosidase: Crystal structure, glycan composition, and internalization into macrophages. Glycobiology, 2010, 20, 24-32.	2.5	113
129	Ceramide Synthases: Roles in Cell Physiology and Signaling. Advances in Experimental Medicine and Biology, 2010, 688, 60-71.	1.6	142
130	Ceramide Synthesis Is Modulated by the Sphingosine Analog FTY720 via a Mixture of Uncompetitive and Noncompetitive Inhibition in an Acyl-CoA Chain Length-de pend ent Manner. Journal of Biological Chemistry, 2009, 284, 16090-16098.	3.4	108
131	No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease. Human Molecular Genetics, 2009, 18, 1482-1488.	2.9	52
132	Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1218-1227.	4.1	46
133	6â€Aminoâ€6â€deoxyâ€5,6â€diâ€ <i>N</i> à6€(<i>N</i> à6€2â€octyliminomethylidene)nojirimycin: Synthesis, Biolog Evaluation, and Crystal Structure in Complex with Acid βâ€Glucosidase. ChemBioChem, 2009, 10, 1480-1485.	gical 2.6	44
134	Impaired IL-10 transcription and release in animal models of Gaucher disease macrophages. Blood Cells, Molecules, and Diseases, 2009, 43, 134-137.	1.4	12
135	Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations. Biophysical Journal, 2009, 96, 3210-3222.	0.5	87
136	De Novo Ceramide Synthesis Is Required for N-Linked Glycosylation in Plasma Cells. Journal of Immunology, 2009, 182, 7038-7047.	0.8	20
137	An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca ²⁺ â€ATPase: relevance to gangliosidoses. Journal of Neurochemistry, 2008, 104, 140-146.	3.9	22
138	Control of the rate of evaporation in protein crystallization by the `microbatch under oil' method. Journal of Applied Crystallography, 2008, 41, 969-971.	4.5	15
139	Acid \hat{l}^2 -glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biological Chemistry, 2008, 389, 1361-1369.	2.5	43
140	Characterization of Ceramide Synthase 2. Journal of Biological Chemistry, 2008, 283, 5677-5684.	3.4	410
141	Regulation of (diâ€hydro) ceramide synthase 1. FASEB Journal, 2008, 22, 299-299.	0.5	1
142	Crystal Structures of Complexes of N-Butyl- and N-Nonyl-Deoxynojirimycin Bound to Acid β-Glucosidase. Journal of Biological Chemistry, 2007, 282, 29052-29058.	3.4	109
143	A New Functional Motif in Hox Domain-containing Ceramide Synthases. Journal of Biological Chemistry, 2007, 282, 27366-27373.	3.4	58
144	(Dihydro)ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated with the Activation of p38 Mitogen-Activated Protein Kinase and Is Abrogated by Sphingosine Kinase 1. Molecular Cancer Research, 2007, 5, 801-812.	3.4	104

#	Article	IF	CITATIONS
145	Changes in macrophage morphology in a Gaucher disease model are dependent on CTP:phosphocholine cytidylyltransferase α. Blood Cells, Molecules, and Diseases, 2007, 39, 124-129.	1.4	7
146	Kinetic characterization of mammalian ceramide synthases: Determination of <i>K</i> _m values towards sphinganine. FEBS Letters, 2007, 581, 5289-5294.	2.8	73
147	Antibody Labeling of Cholesterol/Ceramide Ordered Domains in Cell Membranes. ChemBioChem, 2007, 8, 2286-2294.	2.6	15
148	Taxi service for lipids. Nature, 2007, 449, 35-37.	27.8	6
149	Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnology Journal, 2007, 5, 579-590.	8.3	371
150	The metabolism and function of sphingolipids and glycosphingolipids. Cellular and Molecular Life Sciences, 2007, 64, 2270-2284.	5.4	291
151	Genetic diseases of sphingolipid metabolism: Pathological mechanisms and therapeutic options. FEBS Letters, 2006, 580, 5510-5517.	2.8	38
152	Intracellular trafficking of sphingolipids: Relationship to biosynthesis. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1885-1892.	2.6	64
153	The X-Ray Structure of Human Acid-beta-Glucosidase. , 2006, , 85-96.		0
154	Structural comparison of differently glycosylated forms of acid- \hat{l}^2 -glucosidase, the defective enzyme in Gaucher disease. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1458-1465.	2.5	42
155	Reversion of the biochemical defects in murine embryonic Sandhoff neurons using a bicistronic lentiviral vector encoding hexosaminidase? and?. Journal of Neurochemistry, 2006, 96, 1572-1579.	3.9	8
156	Synthesis and biological evaluation of novel PDMP analogues. Bioorganic and Medicinal Chemistry, 2006, 14, 5273-5284.	3.0	12
157	When Do Lasses (Longevity Assurance Genes) Become CerS (Ceramide Synthases)?. Journal of Biological Chemistry, 2006, 281, 25001-25005.	3.4	393
158	Ceramide Synthase., 2006,, 49-56.		2
159	Neuronal Cell Death in Glycosphingolipidoses. , 2006, , 285-293.		0
160	Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. Journal of Neurochemistry, 2005, 95, 1619-1628.	3.9	54
161	Gaucher disease: pathological mechanisms and modern management. British Journal of Haematology, 2005, 129, 178-188.	2.5	240
162	The ins and outs of sphingolipid synthesis. Trends in Cell Biology, 2005, 15, 312-318.	7.9	299

#	Article	IF	Citations
163	Les maladies lysosomales : mécanismes pathologiques et options thérapeutiques. Medecine/Sciences, 2005, 21, 16-19.	0.2	0
164	The Exon 8-Containing Prosaposin Gene Splice Variant Is Dispensable for Mouse Development, Lysosomal Function, and Secretion. Molecular and Cellular Biology, 2005, 25, 2431-2440.	2.3	16
165	LASS5 Is a Bona Fide Dihydroceramide Synthase That Selectively Utilizes Palmitoyl-CoA as Acyl Donor. Journal of Biological Chemistry, 2005, 280, 33735-33738.	3.4	105
166	X-ray Structure of Human Acid- \hat{l}^2 -Glucosidase Covalently Bound to Conduritol-B-Epoxide. Journal of Biological Chemistry, 2005, 280, 23815-23819.	3.4	102
167	Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiology of Disease, 2005, 18, 83-88.	4.4	134
168	Autoimmune Epilepsy: Some Epilepsy Patients Harbor Autoantibodies to Glutamate Receptors and dsDNA on both Sides of the Blood-brain Barrier, which may Kill Neurons and Decrease in Brain Fluids after Hemispherotomy. Clinical and Developmental Immunology, 2004, 11, 241-252.	3.3	35
169	Phospholipid synthesis is decreased in neuronal tissue in a mouse model of Sandhoff disease. Journal of Neurochemistry, 2004, 90, 80-88.	3.9	30
170	The cell biology of lysosomal storage disorders. Nature Reviews Molecular Cell Biology, 2004, 5, 554-565.	37.0	688
171	The complex life of simple sphingolipids. EMBO Reports, 2004, 5, 777-782.	4.5	591
172	Elevation of lung surfactant phosphatidylcholine in mouse models of Sandhoff and of Niemann-Pick A disease. Journal of Inherited Metabolic Disease, 2004, 27, 641-648.	3.6	20
173	Glycosphingolipidoses: Beyond the enzymatic defect. Glycoconjugate Journal, 2004, 21, 295-304.	2.7	43
174	Phosphatidylcholine metabolism is altered in a monocyte-derived macrophage model of Gaucher disease but not in lymphocytes. Blood Cells, Molecules, and Diseases, 2004, 33, 77-82.	1.4	29
175	New directions in the treatment of Gaucher disease. Trends in Pharmacological Sciences, 2004, 25, 147-151.	8.7	95
176	The pathogenesis of glycosphingolipid storage disorders. Seminars in Cell and Developmental Biology, 2004, 15, 417-431.	5.0	73
177	Xâ€ray structure of human acidâ€Î²â€glucosidase, the defective enzyme in Gaucher disease. EMBO Reports, 2003, 4, 704-709.	4.5	244
178	The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacological Research, 2003, 47, 409-419.	7.1	105
179	Inhibition of Calcium Uptake via the Sarco/Endoplasmic Reticulum Ca2+-ATPase in a Mouse Model of Sandhoff Disease and Prevention by Treatment with N-Butyldeoxynojirimycin. Journal of Biological Chemistry, 2003, 278, 29496-29501.	3.4	129
180	Glucosylceramide and Glucosylsphingosine Modulate Calcium Mobilization from Brain Microsomes via Different Mechanisms. Journal of Biological Chemistry, 2003, 278, 23594-23599.	3.4	151

#	Article	IF	Citations
181	Aminopropyl solid phase extraction and 2 D TLC of neutral glycosphingolipids and neutral lysoglycosphingolipids. Journal of Lipid Research, 2003, 44, 218-226.	4.2	22
182	Simultaneous quantification of lyso-neutral glycosphingolipids and neutral glycosphingolipids by N-acetylation with [3H]acetic anhydride. Journal of Lipid Research, 2003, 44, 1413-1419.	4.2	14
183	Two Mammalian Longevity Assurance Gene (LAG1) Family Members, trh1 and trh4, Regulate Dihydroceramide Synthesis Using Different Fatty Acyl-CoA Donors. Journal of Biological Chemistry, 2003, 278, 43452-43459.	3.4	258
184	Lyso-glycosphingolipids mobilize calcium from brain microsomes via multiple mechanisms. Biochemical Journal, 2003, 375, 561-565.	3.7	38
185	Nerve Growth Factor-induced p75-mediated Death of Cultured Hippocampal Neurons Is Age-dependent and Transduced through Ceramide Generated by Neutral Sphingomyelinase. Journal of Biological Chemistry, 2002, 277, 9812-9818.	3.4	113
186	Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), RegulatesN-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells. Journal of Biological Chemistry, 2002, 277, 35642-35649.	3.4	252
187	Death-associated Protein (DAP) Kinase Plays a Central Role in Ceramide-induced Apoptosis in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2002, 277, 1957-1961.	3.4	125
188	Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB Journal, 2002, 16, 1-29.	0.5	71
189	Sphingolipids Are Required for the Stable Membrane Association of Glycosylphosphatidylinositol-anchored Proteins in Yeast. Journal of Biological Chemistry, 2002, 277, 49538-49544.	3.4	95
190	Synthesis of Homoceramides, Novel Ceramide Analogues, and Their Lack of Effect on the Growth of Hippocampal Neurons. Journal of Organic Chemistry, 2002, 67, 988-996.	3.2	19
191	Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis?. FEBS Letters, 2002, 528, 3-4.	2.8	58
192	Lipid Analysis: A Practical Approach edited by R. J. Hamilton and S. Hamilton. Oxford University Press, New York, 1994, cloth ISBN 0199630984, \$60.00; paperback ISBN 0199630992, \$42.00. Journal of Neurochemistry, 2002, 64, 1424-1425.	3.9	2
193	The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochemical Research, 2002, 27, 565-574.	3.3	26
194	Ceramide in the Regulation of Neuronal Development: Two Faces of a Lipid. Molecular Biology Intelligence Unit, 2002, , 101-111.	0.2	2
195	Comparison of the metabolism of L-erythro- and L-threo-sphinganines and ceramides in cultured cells and in subcellular fractions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 219-226.	2.4	34
196	Cholesterol depletion by methyl-β-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi apparatus in hippocampal neurons. Journal of Neurochemistry, 2001, 78, 991-999.	3.9	57
197	Cholera Toxin Is Found in Detergent-insoluble Rafts/Domains at the Cell Surface of Hippocampal Neurons but Is Internalized via a Raft-independent Mechanism. Journal of Biological Chemistry, 2001, 276, 9182-9188.	3.4	143
198	Immunolocalization of Gangliosides by Light Microscopy Using Anti-Ganglioside Antibodies. Methods in Enzymology, 2000, 312, 179-187.	1.0	10

#	Article	IF	Citations
199	Cloud-Point Extraction of Gangliosides using Nonionic Detergent C14EO6. Methods in Enzymology, 2000, 312, 187-196.	1.0	2
200	An IgE-dependent secretory response of mast cells can be induced by a glycosphingolipid-specific monoclonal antibody. European Journal of Immunology, 2000, 30, 217-226.	2.9	8
201	Ceramide as a second messenger: sticky solutions to sticky problems. Trends in Cell Biology, 2000, 10, 408-412.	7.9	145
202	Up-regulation of Glucosylceramide Synthesis upon Stimulation of Axonal Growth by Basic Fibroblast Growth Factor. Journal of Biological Chemistry, 2000, 275, 9905-9909.	3.4	33
203	A lyso-platelet activating factor phospholipase C, originally suggested to be a neutral-sphingomyelinase, is located in the endoplasmic reticulum. FEBS Letters, 2000, 469, 44-46.	2.8	21
204	Synthesis and Biological Evaluation of Ceramide Analogues with Substituted Aromatic Rings or an Allylic Fluoride in the Sphingoid Moiety. Journal of Medicinal Chemistry, 2000, 43, 4189-4199.	6.4	33
205	Ceramide Signaling Downstream of the p75 Neurotrophin Receptor Mediates the Effects of Nerve Growth Factor on Outgrowth of Cultured Hippocampal Neurons. Journal of Neuroscience, 1999, 19, 8199-8206.	3.6	184
206	Elevation of Intracellular Glucosylceramide Levels Results in an Increase in Endoplasmic Reticulum Density and in Functional Calcium Stores in Cultured Neurons. Journal of Biological Chemistry, 1999, 274, 21673-21678.	3.4	168
207	Up-regulation of Neutral Glycosphingolipid Synthesis upon Long Term Inhibition of Ceramide Synthesis by Fumonisin B1. Journal of Biological Chemistry, 1999, 274, 4607-4612.	3.4	25
208	Sphingolipid Depletion Increases Formation of the Scrapie Prion Protein in Neuroblastoma Cells Infected with Prions. Journal of Biological Chemistry, 1999, 274, 20763-20771.	3.4	155
209	Gangliosides GM1 and GD1b are not polarized in mature hippocampal neurons. FEBS Letters, 1999, 458, 107-111.	2.8	7
210	Effect of Aromatic Short-Chain Analogues of Ceramide on Axonal Growth in Hippocampal Neurons. Journal of Medicinal Chemistry, 1999, 42, 2697-2705.	6.4	27
211	Autoantibodies to the Glutamate Receptor Kill Neurons via Activation of the Receptor Ion Channel. Journal of Autoimmunity, 1999, 13, 61-72.	6.5	95
212	The roles of sphingolipids in regulating neuronal growth and development. Biochemical Society Transactions, 1999, 27, A80-A80.	3.4	0
213	A kibbutz full of lipids Lipids: Regulatory Functions in Membrane Traffic and Cell Development Kfar Blum Kibbutz Guest House, Galilee, Israel, May 10–15, 1998. EMBO Journal, 1998, 17, 6772-6775.	7.8	10
214	Regulatory Roles for Sphingolipids in the Growth of Polarized Neuronsa. Annals of the New York Academy of Sciences, 1998, 845, 176-187.	3.8	16
215	Inhibition of sphingolipid synthesis, but not degradation, alters the rate of dendrite growth in cultured hippocampal neurons. Developmental Brain Research, 1998, 108, 125-130.	1.7	29
216	The Diffusion of Molecules in Axonal Plasma Membranes: the Sites of Insertion of New Membrane Molecules and their Distribution along the Axon Surface. Journal of Theoretical Biology, 1998, 193, 371-382.	1.7	12

#	Article	IF	Citations
217	1-Methylthiodihydroceramide, a Novel Analog of Dihydroceramide, Stimulates Sphinganine Degradation Resulting in Decreased de Novo Sphingolipid Biosynthesis. Journal of Biological Chemistry, 1998, 273, 1184-1191.	3.4	29
218	The Role of Sphingolipids in the Maintenance of Fibroblast Morphology. Journal of Biological Chemistry, 1997, 272, 1558-1564.	3.4	46
219	Determination of the Localization of Gangliosides Using Anti-ganglioside Antibodies: Comparison of Fixation Methods. Journal of Histochemistry and Cytochemistry, 1997, 45, 611-618.	2.5	54
220	Distinct Roles for Ceramide and Glucosylceramide at Different Stages of Neuronal Growth. Journal of Neuroscience, 1997, 17, 2929-2938.	3.6	145
221	Isolation of Gangliosides by Cloud-Point Extraction with a Nonionic Detergent. Analytical Biochemistry, 1997, 254, 221-225.	2.4	15
222	Glucosylceramide Synthesis Is Required for Basic Fibroblast Growth Factor and Laminin to Stimulate Axonal Growth. Journal of Neurochemistry, 1997, 68, 882-885.	3.9	39
223	The economics of neurite outgrowth $\hat{a}\in$ " the addition of new membrane to growing axons. Trends in Neurosciences, 1996, 19, 144-149.	8.6	194
224	A newly-synthesized GPI-anchored protein, TAG-1/axonin-1, is inserted into axonal membranes along the entire length of the axon and not exclusively at the growth cone. Brain Research, 1996, 712, 345-348.	2.2	15
225	The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. BBA - Biomembranes, 1996, 1286, 247-267.	8.0	85
226	Ganglioside Synthesis during the Development of Neuronal Polarity. Journal of Biological Chemistry, 1996, 271, 14876-14882.	3.4	73
227	Rate of Retrograde Transport of Cholera Toxin from the Plasma Membrane to the Golgi Apparatus and Endoplasmic Reticulum Decreases During Neuronal Development. Journal of Neurochemistry, 1996, 67, 2134-2140.	3.9	16
228	Inhibition of sphingolipid synthesis: effects on glycosphingolipid— GPI-anchored protein microdomains. Trends in Cell Biology, 1995, 5, 377-380.	7.9	55
229	A Regulatory Role for Sphingolipids in Neuronal Growth. Journal of Biological Chemistry, 1995, 270, 10990-10998.	3.4	146
230	Cationic Amphiphilic Drugs Inhibit the Internalization of Cholera Toxin to the Golgi Apparatus and the Subsequent Elevation of Cyclic AMP. Journal of Biological Chemistry, 1995, 270, 12117-12122.	3.4	87
231	Ceramide Metabolism Compartmentalized in the Endoplasmic Reticulum and Golgi Apparatus. Current Topics in Membranes, 1994, , 93-110.	0.9	10
232	Lipid diffusion in neurons. Nature, 1993, 362, 119-119.	27.8	31
233	[52] Use of N-([1-14C]Hexanoyl)-D-erythro-sphingolipids to assay sphingolipid metabolism. Methods in Enzymology, 1992, 209, 437-446.	1.0	30