Emmanuelle Gilot-Fromont, Emmanuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186760/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation as a tool to explore ageing in wild roe deer populations. Molecular Ecology Resources, 2022, 22, 1002-1015.	4.8	19
2	Combining seroprevalence and capture-mark-recapture data to estimate the force of infection of brucellosis in a managed population of Alpine ibex. Epidemics, 2022, 38, 100542.	3.0	4
3	Covariation between glucocorticoids, behaviour and immunity supports the pace-of-life syndrome hypothesis: an experimental approach. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	1
4	Variations in immune parameters with age in a wild rodent population and links with survival. Ecology and Evolution, 2022, 12, .	1.9	0
5	Short-term telomere dynamics is associated with glucocorticoid levels in wild populations of roe deer. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 252, 110836.	1.8	9
6	Estimating disease prevalence and temporal dynamics using biased capture serological data in a wildlife reservoir: The example of brucellosis in Alpine ibex (Capra ibex). Preventive Veterinary Medicine, 2021, 187, 105239.	1.9	5
7	Maternal effects shape offspring physiological condition but do not senesce in a wild mammal. Journal of Evolutionary Biology, 2021, 34, 661-670.	1.7	1
8	Pathogenâ€mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate. Journal of Evolutionary Biology, 2021, 34, 1156-1166.	1.7	13
9	Interaction Patterns between Wildlife and Cattle Reveal Opportunities for Mycobacteria Transmission in Farms from North-Eastern Atlantic Iberian Peninsula. Animals, 2021, 11, 2364.	2.3	8
10	Targeted strategies for the management of wildlife diseases: the case of brucellosis in Alpine ibex. Veterinary Research, 2021, 52, 116.	3.0	7
11	Under cover of the night: context-dependency of anthropogenic disturbance on stress levels of wild roe deer Capreolus capreolus. , 2020, 8, coaa086.		17
12	Genetic epidemiology of the Alpine ibex reservoir of persistent and virulent brucellosis outbreak. Scientific Reports, 2020, 10, 4400.	3.3	12
13	An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex. Ecological Modelling, 2020, 425, 109009.	2.5	8
14	The neutrophil to lymphocyte ratio indexes individual variation in the behavioural stress response of wild roe deer across fluctuating environmental conditions. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	13
15	Pattern of latrine use by domestic cats on dairy farms and the implications for Toxoplasma gondii transmission. Veterinary Parasitology, 2019, 273, 112-121.	1.8	1
16	Swab cloths as a tool for revealing environmental contamination by Q fever in ruminant farms. Transboundary and Emerging Diseases, 2019, 66, 1202-1209.	3.0	20
17	Self-clearance of Pestivirus in a Pyrenean Chamois (<i>Rupicapra pyrenaica</i>) Population. Journal of Wildlife Diseases, 2018, 54, 335-341.	0.8	5
18	Demographic stochasticity drives epidemiological patterns in wildlife with implications for diseases and population management. Scientific Reports, 2018, 8, 16846.	3.3	11

Emmanuelle Gilot-Fromont,

#	Article	IF	CITATIONS
19	Comparison of Three Methods to Assess the Potential for Bushpig-Domestic Pig Interactions at the Wildlife—Livestock Interface in Uganda. Frontiers in Veterinary Science, 2018, 5, 295.	2.2	14
20	High Shedding Potential and Significant Individual Heterogeneity in Naturally-Infected Alpine ibex (Capra ibex) With Brucella melitensis. Frontiers in Microbiology, 2018, 9, 1065.	3.5	16
21	The influence of earlyâ€life allocation to antlers on male performance during adulthood: Evidence from contrasted populations of a large herbivore. Journal of Animal Ecology, 2018, 87, 921-932.	2.8	19
22	Contemporary variations of immune responsiveness during range expansion of two invasive rodents in Senegal. Oikos, 2017, 126, 435-446.	2.7	15
23	Sociospatial structure explains marked variation in brucellosis seroprevalence in an Alpine ibex population. Scientific Reports, 2017, 7, 15592.	3.3	23
24	Age-dependent associations between telomere length and environmental conditions in roe deer. Biology Letters, 2017, 13, 20170434.	2.3	35
25	Population genetics, community of parasites, and resistance to rodenticides in an urban brown rat (Rattus norvegicus) population. PLoS ONE, 2017, 12, e0184015.	2.5	42
26	A prospective exploration of farm, farmer, and animal characteristics in human-animal relationships: An epidemiological survey. Journal of Dairy Science, 2016, 99, 5573-5585.	3.4	36
27	Individual variation in an acute stress response reflects divergent coping strategies in a large herbivore. Behavioural Processes, 2016, 132, 22-28.	1.1	16
28	Immune gene variability influences roe deer natal dispersal. Oikos, 2016, 125, 1790-1801.	2.7	5
29	Wildlife Interactions on Baited Places and Waterholes in a French Area Infected by Bovine Tuberculosis. Frontiers in Veterinary Science, 2016, 3, 122.	2.2	26
30	A novel epidemiological model to better understand and predict the observed seasonal spread of Pestivirus in Pyrenean chamois populations. Veterinary Research, 2015, 46, 86.	3.0	7
31	Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (<i>Capreolu</i> s) Tj ETQq1 1 0	.784314 rg 3.9	gBT /Overloc
32	Border Disease Virus: An Exceptional Driver of Chamois Populations Among Other Threats. Frontiers in Microbiology, 2015, 6, 1307.	3.5	22
33	Animaux réservoirs de Toxoplasma gondii : état des lieux en France. Revue Francophone Des Laboratoires, 2015, 2015, 35-52.	0.0	0
34	Agricultural landscape and spatial distribution of Toxoplasma gondii in rural environment: an agent-based model. International Journal of Health Geographics, 2014, 13, 45.	2.5	22
35	Toxoplasmosis in Natural Populations of Ungulates in France: Prevalence and Spatiotemporal Variations. Vector-Borne and Zoonotic Diseases, 2014, 14, 403-413.	1.5	17
36	Does land use within the home range drive the exposure of roe deer (Capreolus capreolus) to two abortive pathogens in a rural agro-ecosystem?. Acta Theriologica, 2014, 59, 571-581.	1.1	11

Emmanuelle Gilot-Fromont,

#	Article	IF	CITATIONS
37	Prevalence of Taenia saginata cysticercosis in French cattle in 2010. Veterinary Parasitology, 2014, 203, 65-72.	1.8	35
38	Spatial distribution of Toxoplasma gondii oocysts in soil in a rural area: Influence of cats and land use. Veterinary Parasitology, 2014, 205, 629-637.	1.8	62
39	Assessing the homogeneity of individual scat detection probability using the bait-marking method on a monitored free-ranging carnivore population. European Journal of Wildlife Research, 2014, 60, 665-672.	1.4	11
40	Species or local environment, what determines the infection of rodents by <i>Toxoplasma gondii</i> ?. Parasitology, 2014, 141, 259-268.	1.5	37
41	Environmental determinants of spatial and temporal variations in the transmission of Toxoplasma gondii in its definitive hosts. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 278-285.	1.5	59
42	Bovine tuberculosis in "Eurasian―badgers (Meles meles) in France. European Journal of Wildlife Research, 2013, 59, 331-339.	1.4	49
43	EXPERIMENTAL INFECTION OF PREGNANT PYRENEAN CHAMOIS (RUPICAPRA PYRENAICA) WITH BORDER DISEASE VIRUS SUBTYPE 4. Journal of Wildlife Diseases, 2013, 49, 55-68.	0.8	11
44	Fitness Consequences of Northward Dispersal as Possible Adaptation to Climate Change, Using Experimental Translocation of a Migratory Passerine. PLoS ONE, 2013, 8, e83176.	2.5	15
45	When should a trophically and vertically transmitted parasite manipulate its intermediate host? The case of <i>Toxoplasma gondii</i> . Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131143.	2.6	15
46	Innate Immunity Correlates with Host Fitness in Wild Boar (Sus scrofa) Exposed to Classical Swine Fever. PLoS ONE, 2013, 8, e79706.	2.5	9
47	Modelling the Dynamics of Host-Parasite Interactions: Basic Principles. , 2012, , 79-101.		4
48	Environmental Factors Associated with the Seroprevalence of Toxoplasma gondii in Wild Boars (Sus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
49	Quantitative Estimation of the Viability of Toxoplasma gondii Oocysts in Soil. Applied and Environmental Microbiology, 2012, 78, 5127-5132.	3.1	101
50	Immune Phenotype and Body Condition in Roe Deer: Individuals with High Body Condition Have Different, Not Stronger Immunity. PLoS ONE, 2012, 7, e45576.	2.5	47
51	Development of a sensitive method for Toxoplasma gondii oocyst extraction in soil. Veterinary Parasitology, 2011, 183, 59-67.	1.8	47
52	Population density and phenotypic attributes influence the level of nematode parasitism in roe deer. Oecologia, 2011, 167, 635-646.	2.0	34
53	Local meteorological conditions, dynamics of seroconversion to <i>Toxoplasma gondii</i> in cats (<i>Felis catus</i>) and oocyst burden in a rural environment. Epidemiology and Infection, 2010, 138, 1105-1113.	2.1	65
54	Transmission dynamics of Toxoplasma gondii along an urban–rural gradient. Theoretical Population Biology, 2010, 78, 139-147.	1.1	46

Emmanuelle Gilot-Fromont,

#	Article	IF	CITATIONS
55	Influence of artificial lights, logs and erosion on leatherback sea turtle hatchling orientation at Pongara National Park, Gabon. Biological Conservation, 2009, 142, 85-93.	4.1	46
56	Options for the Control of Disease 1: Targeting the Infectious or Parasitic Agent. , 2009, , 97-120.		13
57	Options for the Control of Disease 3: Targeting the Environment. , 2009, , 147-168.		9
58	Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia, 2008, 155, 691-704.	2.0	45
59	Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behaviour in an urban area. International Journal for Parasitology, 2008, 38, 1017-1023.	3.1	82
60	Antibodies against Salmonella is associated with reduced reproductive success in female alpine chamois (Rupicapra rupicapra). Canadian Journal of Zoology, 2008, 86, 1111-1120.	1.0	10
61	Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology, 2007, 134, 1963-1971.	1.5	53
62	Transmission of a pestivirus infection in a population of Pyrenean chamois. Veterinary Microbiology, 2007, 119, 19-30.	1.9	41
63	Prevalence of Toxoplasma gondii in small mammals from the Ardennes Region, France. Folia Parasitologica, 2007, 54, 313-314.	1.3	24
64	Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiology and Infection, 2006, 134, 21-30.	2.1	72
65	Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). International Journal for Parasitology, 2006, 36, 1373-1382.	3.1	77
66	Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiology and Infection, 2005, 133, 559-568.	2.1	60
67	Long-term monitoring of classical swine fever in wild boar (Sus scrofa sp.) using serological data. Veterinary Research, 2005, 36, 27-42.	3.0	38
68	The Life Cycle of Toxoplasma gondii in the Natural Environment. , 0, , .		19