
Louise Emsell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An optimized MRI and PET based clinical protocol for improving the differential diagnosis of geriatric depression and Alzheimer's disease. Psychiatry Research - Neuroimaging, 2022, 320, 111443.	1.8	6
2	An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. NeuroImage, 2022, 254, 119029.	4.2	23
3	Neuroimaging Evidence for Increased Neurite Density in Patients Taking Lithium: A Replication Study. Psychotherapy and Psychosomatics, 2021, 90, 71-72.	8.8	0
4	Lithium prevents grey matter atrophy in patients with bipolar disorder: an international multicenter study. Psychological Medicine, 2021, 51, 1201-1210.	4.5	15
5	Are Apathy and Depressive Symptoms Related to Vascular White Matter Hyperintensities in Severe Late Life Depression?. Journal of Geriatric Psychiatry and Neurology, 2021, 34, 21-28.	2.3	12
6	The Leuven late life depression (L3D) study: PET-MRI biomarkers of pathological brain ageing in late-life depression: study protocol. BMC Psychiatry, 2021, 21, 64.	2.6	7
7	Virtual brain grafting: Enabling whole brain parcellation in the presence of large lesions. Neurolmage, 2021, 229, 117731.	4.2	33
8	A longitudinal study of the association between basal ganglia volumes and psychomotor symptoms in subjects with late life depression undergoing ECT. Translational Psychiatry, 2021, 11, 199.	4.8	2
9	Long term fMRI adaptation depends on adapter response in face-selective cortex. Communications Biology, 2021, 4, 712.	4.4	3
10	Elevated body weight modulates subcortical volume change and associated clinical response following electroconvulsive therapy. Journal of Psychiatry and Neuroscience, 2021, 46, E418-E426.	2.4	4
11	Biophysical mechanisms of electroconvulsive therapy-induced volume expansion in the medial temporal lobe: A longitudinal inÂvivo human imaging study. Brain Stimulation, 2021, 14, 1038-1047.	1.6	14
12	Lower regional gray matter volume in the absence of higher cortical amyloid burden in late-life depression. Scientific Reports, 2021, 11, 15981.	3.3	13
13	Diffusion kurtosis imaging of white matter in bipolar disorder. Psychiatry Research - Neuroimaging, 2021, 317, 111341.	1.8	6
14	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage, 2021, 243, 118502.	4.2	94
15	OUP accepted manuscript. Schizophrenia Bulletin, 2021, , .	4.3	1
16	Response to Volume Increase in the Dentate Gyrus Induced by Electroconvulsive Therapy. Journal of ECT, 2021, 37, e3-e5.	0.6	3
17	Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biological Psychiatry, 2020, 87, 451-461.	1.3	72
18	The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review—Part B diffusion imaging and tractography. Research in Developmental Disabilities, 2020, 97, 103569.	2.2	27

#	Article	IF	CITATIONS
19	P.406 Hippocampal volume increase in electroconvulsive therapy is independent of amyloid deposition in late-life depression. European Neuropsychopharmacology, 2020, 31, S79.	0.7	0
20	Regional distribution of amyloid deposition and grey matter atrophy in lateâ€life depression. Alzheimer's and Dementia, 2020, 16, e041564.	0.8	0
21	In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology, 2020, 95, e545-e553.	1.1	56
22	The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review – Part A. Structural imaging. Research in Developmental Disabilities, 2020, 100, 103606.	2.2	17
23	Structural changes induced by electroconvulsive therapy are associated with clinical outcome. Brain Stimulation, 2020, 13, 696-704.	1.6	31
24	Brain-behaviour associations and neural representations of emotions in frontotemporal dementia. Brain, 2020, 143, e17-e17.	7.6	8
25	Hippocampal volume as a vulnerability marker for late onset psychosis: Associations with memory function and childhood trauma. Schizophrenia Research, 2020, 224, 201-202.	2.0	0
26	Association between hippocampal volume change and change in memory following electroconvulsive therapy in lateâ€ife depression. Acta Psychiatrica Scandinavica, 2019, 140, 435-445.	4.5	16
27	Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VECF. Translational Psychiatry, 2019, 9, 191.	4.8	17
28	Cortisol is not associated with pre-treatment medial temporal lobe volume or volume changes after electroconvulsive therapy in patients with late-life depression. Psychiatry Research - Neuroimaging, 2019, 291, 26-33.	1.8	2
29	Reduced tendency to attribute mental states to abstract shapes in behavioral variant frontotemporal dementia links with cerebellar structural integrity. NeuroImage: Clinical, 2019, 22, 101770.	2.7	20
30	Electroconvulsive therapy response in late-life depression unaffected by age-related brain changes. Journal of Affective Disorders, 2019, 251, 114-120.	4.1	13
31	P.301 Hippocampal subfield volumetric changes following electroconvulsive therapy in patients with late-life depression. European Neuropsychopharmacology, 2019, 29, S214-S215.	0.7	1
32	Exploring resting state connectivity in patients with psychotic depression. PLoS ONE, 2019, 14, e0209908.	2.5	10
33	Electric field causes volumetric changes in the human brain. ELife, 2019, 8, .	6.0	57
34	Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?. Brain Imaging and Behavior, 2018, 12, 64-77.	2.1	52
35	Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neuroscience and Biobehavioral Reviews, 2018, 84, 162-170.	6.1	68
36	T128. Medial Temporal Lobe and Subcortical Shape Changes Following Electroconvulsive Therapy in Late-Life Depression. Biological Psychiatry, 2018, 83, S178.	1.3	0

#	Article	IF	CITATIONS
37	Longâ€ŧerm neurocognitive functioning after electroconvulsive therapy in patients with lateâ€life depression. Acta Psychiatrica Scandinavica, 2018, 138, 223-231.	4.5	38
38	Neurodevelopmental subtypes of bipolar disorder are related to cortical folding patterns: An international multicenter study. Bipolar Disorders, 2018, 20, 721-732.	1.9	25
39	Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biological Psychiatry, 2018, 84, 574-581.	1.3	138
40	Asymmetric Amyloid Deposition in the Brain Following Unilateral Electroconvulsive Therapy. Biological Psychiatry, 2017, 81, e11-e13.	1.3	4
41	Anatomical integration and rich-club connectivity in euthymic bipolar disorder. Psychological Medicine, 2017, 47, 1609-1623.	4.5	49
42	The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy. NeuroImage: Clinical, 2017, 14, 422-432.	2.7	68
43	White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study. Psychiatry Research - Neuroimaging, 2017, 260, 29-36.	1.8	17
44	445. Neural Predictors and Correlates of Electroconvulsive Therapy in Late-Life Depression. Biological Psychiatry, 2017, 81, S181-S182.	1.3	0
45	Corpus callosum macro and microstructure in late-life depression. Journal of Affective Disorders, 2017, 222, 63-70.	4.1	27
46	No Association of Lower Hippocampal Volume With Alzheimer's Disease Pathology in Late-Life Depression. American Journal of Psychiatry, 2017, 174, 237-245.	7.2	59
47	Early- and Late-Onset Depression in Late Life: A Prospective Study on Clinical and Structural Brain Characteristics and Response to Electroconvulsive Therapy. American Journal of Geriatric Psychiatry, 2017, 25, 178-189.	1.2	59
48	Grey matter volume increase following electroconvulsive therapy in patients with late life depression: a longitudinal MRI study. Journal of Psychiatry and Neuroscience, 2016, 41, 105-114.	2.4	84
49	Chemotherapy-induced neurotoxicity in pediatric solid non-CNS tumor patients: An update on current state of research and recommended future directions. Critical Reviews in Oncology/Hematology, 2016, 103, 37-48.	4.4	30
50	Relationship Between Hippocampal Volume, Serum BDNF, and Depression Severity Following Electroconvulsive Therapy in Late-Life Depression. Neuropsychopharmacology, 2016, 41, 2741-2748.	5.4	87
51	DTI in Diagnosis and Follow-Up of Brain Tumors. , 2016, , 309-330.		1
52	DTI Analysis Methods: Voxel-Based Analysis. , 2016, , 183-203.		11
53	DTI in Clinical Practice: Opportunities and Considerations. , 2016, , 275-290.		1

54 Quantitative DTI Measures. , 2016, , 65-87.

Louise Emsell

#	Article	IF	CITATIONS
55	Strategies and Challenges in DTI Analysis. , 2016, , 153-173.		2
56	DTI in Psychiatry. , 2016, , 359-372.		1
57	Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 2016, 21, 1710-1716.	7.9	400
58	Introduction to Diffusion Tensor Imaging. , 2016, , 7-19.		9
59	Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study. Journal of Psychiatry and Neuroscience, 2015, 40, 352-359.	2.4	53
60	Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 2015, 36, 2107-2121.	3.1	183
61	Volume and shape analysis of subcortical brain structures and ventricles in euthymic bipolar I disorder. Psychiatry Research - Neuroimaging, 2015, 233, 324-330.	1.8	26
62	Structural brain network analysis in families multiply affected with bipolar I disorder. Psychiatry Research - Neuroimaging, 2015, 234, 44-51.	1.8	48
63	Altered Interhemispheric and Temporal Lobe White Matter Microstructural Organization in Severe Chronic Schizophrenia. Neuropsychopharmacology, 2014, 39, 944-954.	5.4	68
64	Longitudinal Assessment of Chemotherapy-Induced Alterations in Brain Activation During Multitasking and Its Relation With Cognitive Complaints. Journal of Clinical Oncology, 2014, 32, 2031-2038.	1.6	66
65	White matter microstructural abnormalities in families multiply affected with bipolar I disorder: a diffusion tensor tractography study. Psychological Medicine, 2014, 44, 2139-2150.	4.5	42
66	Characterizing the microstructural basis of "unidentified bright objects―in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. NeuroImage: Clinical, 2014, 4, 649-658.	2.7	92
67	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	2.1	696
68	A diffusion tensor imaging family study of the fornix in schizophrenia. Schizophrenia Research, 2014, 159, 435-440.	2.0	12
69	Poster #M51 TEMPORAL LOBE WHITE MATTER ALTERATIONS IN SCHIZOPHRENIA: A DIFFUSION TENSOR IMAGING TRACTOMETRY FAMILY STUDY. Schizophrenia Research, 2014, 153, S207-S208.	2.0	0
70	Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. NeuroImage: Clinical, 2014, 4, 374-382.	2.7	139
71	Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography. NeuroImage, 2014, 94, 312-336.	4.2	37
72	Association of grey matter volume deviation with insight impairment in first-episode affective and non-affective psychosis. European Archives of Psychiatry and Clinical Neuroscience, 2013, 263, 133-141.	3.2	28

#	Article	IF	CITATIONS
73	The functional neuroanatomy of multitasking: Combining dual tasking with a short term memory task. Neuropsychologia, 2013, 51, 2251-2260.	1.6	42
74	Cavum septum pellucidum in pediatric traumatic brain injury. Psychiatry Research - Neuroimaging, 2013, 213, 186-192.	1.8	15
75	White matter differences in euthymic bipolar I disorder: a combined magnetic resonance imaging and diffusion tensor imaging voxelâ€based study. Bipolar Disorders, 2013, 15, 365-376.	1.9	50
76	Limbic and Callosal White Matter Changes in Euthymic Bipolar I Disorder: An Advanced Diffusion Magnetic Resonance Imaging Tractography Study. Biological Psychiatry, 2013, 73, 194-201.	1.3	116
77	The effect of template selection on diffusion tensor voxel-based analysis results. NeuroImage, 2011, 55, 566-573.	4.2	57
78	VARIATION IN GREY MATTER VOLUME WITH DEGREE OF INSIGHT IN FIRST EPISODE PSYCHOSIS AND CHRONIC SCHIZOPHRENIA. Schizophrenia Research, 2010, 117, 340.	2.0	0
79	The structural neuroimaging of bipolar disorder. International Review of Psychiatry, 2009, 21, 297-313.	2.8	81