List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell, 2014, 15, 707-719.	11.1	990
2	Reactive nitrogen species in the chemical biology of inflammation. Archives of Biochemistry and Biophysics, 2004, 423, 12-22.	3.0	540
3	DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. Journal of Clinical Investigation, 2008, 118, 2516-25.	8.2	415
4	A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress. PLoS Genetics, 2010, 6, e1001247.	3.5	386
5	Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nature Communications, 2012, 3, 937.	12.8	348
6	m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nature Methods, 2016, 13, 692-698.	19.0	310
7	N6-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Developmental Cell, 2016, 38, 186-200.	7.0	281
8	Phosphorothioation of DNA in bacteria by dnd genes. Nature Chemical Biology, 2007, 3, 709-710.	8.0	234
9	Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. International Journal of Cancer, 2011, 128, 1999-2009.	5.1	228
10	Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chemical Research in Toxicology, 1992, 5, 311-332.	3.3	224
11	Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nature Protocols, 2014, 9, 828-841.	12.0	221
12	Characterization of the reactions of platinum antitumor agents with biologic and nonbiologic sulfur-containing nucleophiles. Biochemical Pharmacology, 1987, 36, 1955-1964.	4.4	215
13	Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1820-9.	7.1	209
14	Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut, 2010, 59, 88-97.	12.1	208
15	The Chemical Toxicology of 2-Deoxyribose Oxidation in DNA. Chemical Research in Toxicology, 2008, 21, 206-219.	3.3	196
16	Indirect mutagenesis by oxidative DNA damage: Formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11113-11116.	7.1	190
17	Human AlkB Homolog ABH8 Is a tRNA Methyltransferase Required for Wobble Uridine Modification and DNA Damage Survival. Molecular and Cellular Biology, 2010, 30, 2449-2459.	2.3	182
18	N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 60-65.	7.1	179

#	Article	IF	CITATIONS
19	Quantitation of 8-Oxoguanine and Strand Breaks Produced by Four Oxidizing Agents. Chemical Research in Toxicology, 1997, 10, 386-392.	3.3	173
20	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164
21	Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. Journal of Biological Chemistry, 2017, 292, 14695-14703.	3.4	159
22	The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 2017, 8, 15737.	12.8	154
23	Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 169-174.	7.1	153
24	DNA Damage in Deoxynucleosides and Oligonucleotides Treated with Peroxynitrite. Chemical Research in Toxicology, 1999, 12, 513-520.	3.3	146
25	tRNA modifications regulate translation during cellular stress. FEBS Letters, 2014, 588, 4287-4296.	2.8	138
26	DNA phosphorothioation is widespread and quantized in bacterial genomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2963-2968.	7.1	137
27	DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis. PLoS Pathogens, 2013, 9, e1003419.	4.7	132
28	Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biology, 2015, 12, 603-614.	3.1	129
29	tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nature Communications, 2016, 7, 13302.	12.8	129
30	2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase. PLoS Pathogens, 2012, 8, e1002642.	4.7	125
31	Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Research, 2019, 47, e130-e130.	14.5	124
32	A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Analytical Biochemistry, 1991, 197, 83-90.	2.4	121
33	Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radical Research, 2012, 46, 367-381.	3.3	114
34	Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Research, 2014, 42, e170-e170.	14.5	114
35	Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis, 2007, 28, 1807-1813.	2.8	112
36	Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nature Protocols, 2008, 3, 1287-1298.	12.0	106

#	Article	IF	CITATIONS
37	Exclusive production of bistranded DNA damage by calicheamicin. Biochemistry, 1993, 32, 3617-3622.	2.5	99
38	Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1452-9.	7.1	99
39	A human tRNA methyltransferase 9â€like protein prevents tumour growth by regulating LIN9 and HIF1â€Î±. EMBO Molecular Medicine, 2013, 5, 366-383.	6.9	98
40	Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2319-2324.	7.1	93
41	Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation. PLoS Genetics, 2015, 11, e1005706.	3.5	92
42	Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biology, 2012, 9, 990-1001.	3.1	91
43	Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nature Communications, 2014, 5, 3951.	12.8	90
44	Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2332-41.	7.1	88
45	DNA phosphorothioate modification—a new multi-functional epigenetic system in bacteria. FEMS Microbiology Reviews, 2019, 43, 109-122.	8.6	87
46	SspABCD–SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nature Microbiology, 2020, 5, 917-928.	13.3	86
47	Peroxynitrite-induced DNA damage in the supF gene: correlation with the mutational spectrum. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 447, 287-303.	1.0	84
48	Kinetic Analysis of Intracellular Concentrations of Reactive Nitrogen Species. Chemical Research in Toxicology, 2008, 21, 2134-2147.	3.3	82
49	A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation. Chemical Research in Toxicology, 2014, 27, 330-337.	3.3	82
50	Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes. Frontiers in Microbiology, 2017, 8, 459.	3.5	79
51	Alkbh8 Regulates Selenocysteine-Protein Expression to Protect against Reactive Oxygen Species Damage. PLoS ONE, 2015, 10, e0131335.	2.5	77
52	Chemical and Biological Evidence for Base Propenals as the Major Sourceof the Endogenous M1dG Adduct in CellularDNA. Journal of Biological Chemistry, 2005, 280, 25377-25382.	3.4	76
53	Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle, 2012, 11, 3656-3665.	2.6	75
54	AlkB Homologue 2–Mediated Repair of Ethenoadenine Lesions in Mammalian DNA. Cancer Research, 2008, 68, 4142-4149.	0.9	71

#	Article	IF	CITATIONS
55	Absence of 2â€~-Deoxyoxanosine and Presence of Abasic Sites in DNA Exposed to Nitric Oxide at Controlled Physiological Concentrations. Chemical Research in Toxicology, 2003, 16, 1044-1055.	3.3	70
56	A Platform for Discovery and Quantification of Modified Ribonucleosides in RNA. Methods in Enzymology, 2015, 560, 29-71.	1.0	69
57	Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chemical Research in Toxicology, 2015, 28, 978-988.	3.3	68
58	Paradoxical hotspots for guanine oxidation by a chemical mediator of inflammation. Nature Chemical Biology, 2006, 2, 365-366.	8.0	67
59	tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. European Journal of Human Genetics, 2017, 25, 545-551.	2.8	67
60	Cu(II)/H2O2-Induced DNA Damage Is Enhanced by Packaging of DNA as a Nucleosome. Chemical Research in Toxicology, 2001, 14, 416-422.	3.3	66
61	Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells. Chemical Research in Toxicology, 2006, 19, 399-406.	3.3	66
62	Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nature Microbiology, 2019, 4, 2246-2259.	13.3	66
63	Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4501-4506.	7.1	64
64	Neocarzinostatin-mediated DNA damage in a model AGT.cntdot.ACT site: mechanistic studies of thiol-sensitive partitioning of C4' DNA damage products. Biochemistry, 1992, 31, 1917-1927.	2.5	63
65	7-Deazaguanine modifications protect phage DNA from host restriction systems. Nature Communications, 2019, 10, 5442.	12.8	63
66	Reaction ofcis- andtrans-2-Butene-1,4-dial with 2â€~-Deoxycytidine to Form Stable Oxadiazabicyclooctaimine Adducts. Journal of the American Chemical Society, 2001, 123, 2664-2665.	13.7	62
67	Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biology, 2018, 19, 228.	8.8	61
68	Formation of the 1,N2-Glyoxal Adduct of Deoxyguanosine by Phosphoglycolaldehyde, a Product of 3â€~-Deoxyribose Oxidation in DNA. Chemical Research in Toxicology, 2001, 14, 1247-1253.	3.3	59
69	Quantification of the 2-Deoxyribonolactone and Nucleoside 5′-Aldehyde Products of 2-Deoxyribose Oxidation in DNA and Cells by Isotope-Dilution Gas Chromatography Mass Spectrometry: Differential Effects of γ-Radiation and Fe2+ⰒEDTA. Journal of the American Chemical Society, 2010, 132, 6145-6153.	13.7	59
70	Recommendations for Standardized Description of and Nomenclature Concerning Oxidatively Damaged Nucleobases in DNA. Chemical Research in Toxicology, 2010, 23, 705-707.	3.3	57
71	Comparative Analysis of Four Oxidized Guanine Lesions from Reactions of DNA with Peroxynitrite, Singlet Oxygen, and γ-Radiation. Chemical Research in Toxicology, 2013, 26, 195-202.	3.3	57
72	Relatively Small Increases in the Steady-State Levels of Nucleobase Deamination Products in DNA from Human TK6 Cells Exposed to Toxic Levels of Nitric Oxide. Chemical Research in Toxicology, 2006, 19, 50-57.	3.3	55

#	Article	IF	CITATIONS
73	Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nature Chemical Biology, 2017, 13, 888-894.	8.0	54
74	Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nature Chemical Biology, 2020, 16, 964-972.	8.0	54
75	Mechanisms of Oxidation of Guanine in DNA by Carbonate Radical Anion, a Decomposition Product of Nitrosoperoxycarbonate. Chemistry - A European Journal, 2007, 13, 4571-4581.	3.3	53
76	The Versatile Roles of the tRNA Epitranscriptome during Cellular Responses to Toxic Exposures and Environmental Stress. Toxics, 2019, 7, 17.	3.7	53
77	Influence of thiol structure on neocarzinostatin activation and expression of DNA damage. Biochemistry, 1992, 31, 1909-1917.	2.5	52
78	Quantification of Cellular Poly(ADP-ribosyl)ation by Stable Isotope Dilution Mass Spectrometry Reveals Tissue- and Drug-Dependent Stress Response Dynamics. ACS Chemical Biology, 2013, 8, 1567-1575.	3.4	50
79	Transcriptional Profiling of Mycobacterium tuberculosis Exposed to <i>In Vitro</i> Lysosomal Stress. Infection and Immunity, 2016, 84, 2505-2523.	2.2	50
80	Oxidation of Guanine in G, GG, and GGG Sequence Contexts by Aromatic Pyrenyl Radical Cations and Carbonate Radical Anions:Â Relationship between Kinetics and Distribution of Alkali-Labile Lesions. Journal of Physical Chemistry B, 2008, 112, 1834-1844.	2.6	49
81	Quantitative Analysis of Histone Modifications: Formaldehyde Is a Source of Pathological N6-Formyllysine That Is Refractory to Histone Deacetylases. PLoS Genetics, 2013, 9, e1003328.	3.5	49
82	Immunostimulating and Gramâ€negativeâ€specific antibacterial cyclotides from the butterfly pea (<i>Clitoria ternatea</i>). FEBS Journal, 2016, 283, 2067-2090.	4.7	49
83	Allosteric pyruvate kinase-based "logic gate―synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nature Communications, 2017, 8, 1986.	12.8	49
84	Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nature Communications, 2020, 11, 296.	12.8	48
85	The Deoxyfucose-Anthranilate of Esperamicin A1 Confers Intercalative DNA Binding and Causes a Switch in the Chemistry of Bistranded DNA Lesions. Journal of the American Chemical Society, 1994, 116, 9733-9738.	13.7	46
86	Removal by human apurinic/apyrimidinic endonuclease 1 (Ape 1) and Escherichia coli exonuclease III of 3′-phosphoglycolates from DNA treated with neocarzinostatin, calicheamicin, and γ-radiation. Biochemical Pharmacology, 1999, 57, 531-538.	4.4	46
87	XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair, 2011, 10, 1282-1293.	2.8	46
88	Nick-seq for single-nucleotide resolution genomic maps of DNA modifications and damage. Nucleic Acids Research, 2020, 48, 6715-6725.	14.5	46
89	Effects of DNA Structure on Oxopropenylation by the Endogenous Mutagens Malondialdehyde and Base Propenal. Biochemistry, 2002, 41, 5033-5042.	2.5	43
90	Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nature Biotechnology, 2021, 39, 978-988.	17.5	43

#	Article	IF	CITATIONS
91	Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation. Environmental Health Perspectives, 2012, 120, 1130-1136.	6.0	42
92	Induction of Functional Human Macrophages from Bone Marrow Promonocytes by M-CSF in Humanized Mice. Journal of Immunology, 2013, 191, 3192-3199.	0.8	42
93	Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2016, 44, 10834-10848.	14.5	42
94	GC/MS Methods To Quantify the 2-Deoxypentos-4-ulose and 3′-Phosphoglycolate Pathways of 4′ Oxidation of 2-Deoxyribose in DNA: Application to DNA Damage Produced by γ Radiation and Bleomycin. Chemical Research in Toxicology, 2007, 20, 1701-1708.	3.3	40
95	A multidimensional platform for the purification of non-coding RNA species. Nucleic Acids Research, 2013, 41, e168-e168.	14.5	40
96	Pathological phenotypes and <i>in vivo</i> â€ <scp>DNA</scp> cleavage by unrestrained activity of a phosphorothioateâ€based restriction system in <scp><i>S</i></scp> <i>almonella</i> . Molecular Microbiology, 2014, 93, 776-785.	2.5	40
97	5â€~-(2-Phosphoryl-1,4-dioxobutane) as a Product of 5â€~-Oxidation of Deoxyribose in DNA:  Elimination as trans-1,4-Dioxo-2-butene and Approaches to Analysis. Chemical Research in Toxicology, 2004, 17, 1406-1413.	3.3	39
98	DNA Sequence Context as a Determinant of the Quantity and Chemistry of Guanine Oxidation Produced by Hydroxyl Radicals and One-electron Oxidants. Journal of Biological Chemistry, 2008, 283, 35569-35578.	3.4	39
99	Chemistry meets biology in colitis-associated carcinogenesis. Free Radical Research, 2013, 47, 958-986.	3.3	39
100	A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. IScience, 2018, 9, 367-381.	4.1	39
101	Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: Application to Î ³ -radiation and peroxynitrite. Analytical Biochemistry, 2005, 343, 84-92.	2.4	37
102	Effects of Peroxynitrite Dose and Dose Rate on DNA Damage and Mutation in thesupFShuttle Vector. Chemical Research in Toxicology, 2005, 18, 76-86.	3.3	36
103	Aristolochic Acids as Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake. Journal of Agricultural and Food Chemistry, 2018, 66, 11468-11476.	5.2	36
104	Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proceedings of the United States of America, 2019, 116, 19126-19135.	7.1	36
105	Photosensitized Oxidative DNA Damage:  From Hole Injection to Chemical Product Formation and Strand Cleavage. Journal of the American Chemical Society, 2007, 129, 9321-9332.	13.7	35
106	Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. Rna, 2014, 20, 177-188.	3.5	35
107	tRNA epitranscriptomics and biased codon areÂlinked to proteome expression in <i>PlasmodiumÂfalciparum</i> . Molecular Systems Biology, 2018, 14, e8009.	7.2	34
108	Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation. Molecular Cell, 2022, 82, 404-419.e9.	9.7	34

#	Article	IF	CITATIONS
109	Esperamicin A1 Intercalates into Duplex DNA from the Minor Groove. Journal of the American Chemical Society, 1994, 116, 9387-9388.	13.7	33
110	Targeting the Bacterial Epitranscriptome for Antibiotic Development: Discovery of Novel tRNA-(N ¹ G37) Methyltransferase (TrmD) Inhibitors. ACS Infectious Diseases, 2019, 5, 326-335.	3.8	33
111	Dosimetry of <i>N</i> ⁶ -Formyllysine Adducts Following [¹³ C ² H ₂]-Formaldehyde Exposures in Rats. Chemical Research in Toxicology, 2013, 26, 1421-1423.	3.3	32
112	Exploring the virulence gene interactome with <scp>CRISPR</scp> / <scp>dC</scp> as9 in the human malaria parasite. Molecular Systems Biology, 2020, 16, e9569.	7.2	32
113	The Benzoxazolinate of C-1027 Confers Intercalative DNA Binding. Journal of the American Chemical Society, 1995, 117, 8877-8878.	13.7	31
114	Stability of 2'-deoxyxanthosine in DNA. Nucleic Acids Research, 2003, 31, 1045-1051.	14.5	31
115	Delineation of the Chemical Pathways Underlying Nitric Oxide-Induced Homologous Recombination in Mammalian Cells. Chemistry and Biology, 2005, 12, 357-369.	6.0	31
116	Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. MBio, 2021, 12, .	4.1	29
117	Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37- <i>N</i> ¹)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. Journal of Medicinal Chemistry, 2019, 62, 7788-7805.	6.4	27
118	Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate. Science Advances, 2019, 5, eaav0184.	10.3	27
119	The Biological and Metabolic Fates of Endogenous DNA Damage Products. Journal of Nucleic Acids, 2010, 2010, 1-13.	1.2	26
120	Identification of N6,N6-Dimethyladenosine in Transfer RNA from Mycobacterium bovis Bacille Calmette-Guérin. Molecules, 2011, 16, 5168-5181.	3.8	26
121	Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 120-134.	1.0	25
122	Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14322-14330.	7.1	25
123	AlkB Influences the Chloroacetaldehyde-Induced Mutation Spectra and Toxicity in the pSP189 <i>supF</i> Shuttle Vector. Chemical Research in Toxicology, 2007, 20, 1075-1083.	3.3	24
124	28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures. Journal of Biotechnology, 2014, 174, 16-21.	3.8	24
125	Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Research, 2020, 48, 184-199.	14.5	24
126	Supercoiling affects the accessibility of glutathione to DNA-bound molecules: Positive supercoiling inhibits calicheamicin-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 102-107.	7.1	23

#	Article	IF	CITATIONS
127	DNA Bending Is a Determinant of Calicheamicin Target Recognitionâ€. Biochemistry, 2000, 39, 7605-7612.	2.5	23
128	Formation of 1,4-Dioxo-2-butene-Derived Adducts of 2â€~-Deoxyadenosine and 2â€~-Deoxycytidine in Oxidized DNA. Chemical Research in Toxicology, 2006, 19, 982-985.	3.3	23
129	Surveying the damage: the challenges of developing nucleic acid biomarkers of inflammation. Molecular BioSystems, 2008, 4, 902.	2.9	23
130	Illuminating Host-Mycobacterial Interactions with Genome-wide CRISPR Knockout and CRISPRi Screens. Cell Systems, 2020, 11, 239-251.e7.	6.2	23
131	Detecting the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1663.	6.4	23
132	Reaction of 2′-deoxyribonucleosides with cis- and trans-1,4-dioxo-2-butene. Biochemical and Biophysical Research Communications, 2004, 323, 838-844.	2.1	22
133	Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Science Advances, 2018, 4, eaas9184.	10.3	22
134	Detection of preQ0 deazaguanine modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same hypermodification at two distinct DNA motifs. Nucleic Acids Research, 2020, 48, 10383-10396.	14.5	22
135	New insights into calicheamicin-DNA interactions derived from a model nucleosome system. Bioorganic and Medicinal Chemistry, 1995, 3, 729-741.	3.0	21
136	Gene- and genome-based analysis of significant codon patterns in yeast, rat and mice genomes with the CUT Codon UTilization tool. Methods, 2016, 107, 98-109.	3.8	21
137	Analysis of 3â€~-Phosphoglycolaldehyde Residues in Oxidized DNA by Gas Chromatography/Negative Chemical Ionization/Mass Spectrometry. Chemical Research in Toxicology, 2003, 16, 1560-1566.	3.3	20
138	Biological role of glutathione in nitric oxide-induced toxicity in cell culture and animal models. Free Radical Biology and Medicine, 2005, 39, 1489-1498.	2.9	20
139	Differential Oxidation of Deoxyribose in DNA by \hat{I}^3 and $\hat{I}\pm$ -Particle Radiation. Radiation Research, 2005, 163, 654-662.	1.5	20
140	Challenges in developing DNA and RNA biomarkers of inflammation. Biomarkers in Medicine, 2007, 1, 293-312.	1.4	20
141	Tagging Transferrin Receptor with a Disulfide FRET Probe To Gauge the Redox State in Endosomal Compartments. Analytical Chemistry, 2020, 92, 12460-12466.	6.5	20
142	Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast. Biomolecules, 2020, 10, 322.	4.0	20
143	Infection, inflammation and colon carcinogenesis. Oncotarget, 2012, 3, 737-738.	1.8	20
144	Differential Effects of DNA Supercoiling on Radical-Mediated DNA Strand Breaks. Chemical Research in Toxicology, 1997, 10, 1118-1122.	3.3	18

#	Article	IF	CITATIONS
145	In Situ Analysis of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Oxidation Reveals Sequence- and Agent-Specific Damage Spectra. Journal of the American Chemical Society, 2012, 134, 18053-18064.	13.7	18
146	An extensive allelic series of <i>Drosophila kae1</i> mutants reveals diverse and tissue-specific requirements for t6A biogenesis. Rna, 2015, 21, 2103-2118.	3.5	18
147	<i>Mycobacterium tuberculosis</i> Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. Journal of Immunology, 2018, 200, 3244-3258.	0.8	18
148	Malaria Parasite Stress Tolerance Is Regulated by DNMT2-Mediated tRNA Cytosine Methylation. MBio, 2021, 12, e0255821.	4.1	18
149	Large Scale Preparation of Positively Supercoiled DNA Using the Archaeal Histone HMf. Nucleic Acids Research, 1997, 25, 1660-1661.	14.5	16
150	The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA. BMC Genomics, 2006, 7, 313.	2.8	16
151	Identification of the minimal bacterial 2′â€deoxyâ€7â€amidoâ€7â€deazaguanine synthesis machinery. Molecu Microbiology, 2018, 110, 469-483.	ılar 2.5	16
152	Strategies to Avoid Artifacts in Mass Spectrometryâ€Based Epitranscriptome Analyses. Angewandte Chemie - International Edition, 2021, 60, 23885-23893.	13.8	16
153	Thiols Alter the Partitioning of Calicheamicin-Induced Deoxyribose 4â€ ⁻ -Oxidation Reactions in the Absence of DNA Radical Repair. Chemical Research in Toxicology, 2001, 14, 528-535.	3.3	15
154	Resistance to Nitric Oxide-induced Necrosis in Heme Oxygenase-1 Overexpressing Pulmonary Epithelial Cells Associated with Decreased Lipid Peroxidation*. Journal of Biological Chemistry, 2006, 281, 36603-36612.	3.4	15
155	Increased Levels of Inosine in a Mouse Model of Inflammation. Chemical Research in Toxicology, 2013, 26, 538-546.	3.3	15
156	tRNA-modifying enzyme mutations induce codon-specific mistranslation and protein aggregation in yeast. RNA Biology, 2021, 18, 563-575.	3.1	15
157	DNA Damage Produced by Enediynes in the Human Phosphoglycerate Kinase Gene in Vivo:  Esperamicin A1 as a Nucleosome Footprinting Agent. Biochemistry, 1998, 37, 1890-1897.	2.5	14
158	Sequence-Dependent Variation in the Reactivity of 8-Oxo-7,8-dihydro-2′-deoxyguanosine toward Oxidation. Chemical Research in Toxicology, 2012, 25, 366-373.	3.3	14
159	An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants. Toxicology, 2013, 310, 15-21.	4.2	14
160	Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides. Nucleic Acids Research, 2015, 43, e32-e32.	14.5	14
161	Crystal structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD fromPseudomonas aeruginosa. Rna, 2019, 25, 1481-1496.	3.5	14
162	<i>N</i> ⁶ -Formyllysine as a Biomarker of Formaldehyde Exposure: Formation and Loss of <i>N</i> ⁶ -Formyllysine in Nasal Epithelium in Long-Term, Low-Dose Inhalation Studies in Rats. Chemical Research in Toxicology, 2017, 30, 1572-1576.	3.3	13

#	Article	IF	CITATIONS
163	DNA Phosphorothioate Modifications Are Widely Distributed in the Human Microbiome. Biomolecules, 2020, 10, 1175.	4.0	12
164	The epitranscriptomic writer ALKBH8 drives tolerance and protects mouse lungs from the environmental pollutant naphthalene. Epigenetics, 2020, 15, 1121-1138.	2.7	12
165	Metabolic fate of endogenous molecular damage: Urinary glutathione conjugates of DNA-derived base propenals as markers of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4845-53.	7.1	11
166	The t ⁶ A modification acts as a positive determinant for the anticodon nuclease PrrC, and is distinctively nonessential in <i>Streptococcus mutans</i> . RNA Biology, 2018, 15, 508-517.	3.1	11
167	Functional Characterization of the m ⁶ A-Dependent Translational Modulator PfYTH.2 in the Human Malaria Parasite. MBio, 2021, 12, .	4.1	11
168	Modulation of Enediyne-Induced DNA Damage by Chromatin Structures in Transcriptionally Active Genesâ€. Biochemistry, 1999, 38, 15641-15646.	2.5	10
169	In vitro analysis of phosphorothioate modification of DNA reveals substrate recognition by a multiprotein complex. Scientific Reports, 2015, 5, 12513.	3.3	10
170	DNA Oxidation as a Source of Endogenous Electrophiles:Â Formation of Ethenoadenine Adducts in γ-Irradiated DNA. Journal of the American Chemical Society, 1999, 121, 9231-9232.	13.7	8
171	Solvent Exposure Associated with Single Abasic Sites Alters the Base Sequence Dependence of Oxidation of Guanine in DNA in GG Sequence Contexts. ChemBioChem, 2011, 12, 1731-1739.	2.6	8
172	Protein Domain Guided Screen for Sequence Specific and Phosphorothioate-Dependent Restriction Endonucleases. Frontiers in Microbiology, 2020, 11, 1960.	3.5	8
173	An improved method for large-scale preparation of negatively and positively supercoiled plasmid DNA. BioTechniques, 2009, 47, 633-635.	1.8	7
174	The role of sequence context, nucleotide pool balance and stress in 2′-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA. Nucleic Acids Research, 2016, 44, 8962-8975.	14.5	7
175	Thiazolidin-5-imine Formation as a Catalyst-Free Bioorthogonal Reaction for Protein and Live Cell Labeling. Organic Letters, 2018, 20, 7790-7793.	4.6	7
176	Crystal structure of the periplasmic sensor domain of histidine kinase VbrK suggests indirect sensing of β-lactam antibiotics. Journal of Structural Biology, 2020, 212, 107610.	2.8	7
177	Pyruvate kinase from Plasmodium falciparum: Structural and kinetic insights into the allosteric mechanism. Biochemical and Biophysical Research Communications, 2020, 532, 370-376.	2.1	7
178	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	3.2	7
179	Calicheamicin-Mediated DNA Damage in a Reconstituted Nucleosome Is Not Affected by Histone Acetylation:  The Role of Drug Structure in the Target Recognition Process. Biochemistry, 1997, 36, 12653-12659.	2.5	6
180	Pyruvate Kinase Regulates the Pentose-Phosphate Pathway in Response to Hypoxia in Mycobacterium tuberculosis. Journal of Molecular Biology, 2019, 431, 3690-3705.	4.2	6

#	Article	IF	CITATIONS
181	Mechanisms of target selection by DNA-damaging chemicals: studies with enediyne anticancer drugs. International Archives of Occupational and Environmental Health, 1996, 68, 408-414.	2.3	5
182	An Improved Method for the Rapid Assessment of DNA Bending by Small Molecules. Journal of Biomolecular Structure and Dynamics, 1997, 15, 277-284.	3.5	5
183	A General Method for Quantifying Sequence Effects on Nucleobase Oxidation in DNA. Methods in Molecular Biology, 2010, 610, 325-340.	0.9	5
184	Abstracts, American Chemical Society Division of Chemical Toxicology, 226th ACS National Meeting, New York, New York, September 7â^11, 2003. Chemical Research in Toxicology, 2003, 16, 1661-1688.	3.3	4
185	A system for exposing molecules and cells to biologically relevant and accurately controlled steady-state concentrations of nitric oxide and oxygen. Nitric Oxide - Biology and Chemistry, 2012, 27, 161-168.	2.7	4
186	More than an adaptor molecule: The emerging role of tRNA in cell signaling and disease. FEBS Letters, 2014, 588, 4267-4267.	2.8	4
187	Backbone resonance assignment for the N-terminal region of bacterial tRNA-(N1G37) methyltransferase. Biomolecular NMR Assignments, 2019, 13, 49-53.	0.8	4
188	Development of Methods Derived from Iodine-Induced Specific Cleavage for Identification and Quantitation of DNA Phosphorothioate Modifications. Biomolecules, 2020, 10, 1491.	4.0	4
189	Oxidation and Deamination of DNA by Endogenous Sources. , 2011, , 209-225.		4
190	Oneâ€electron Oxidation of a Pyrenyl Photosensitizer Covalently Attached to DNA and Competition Between its Further Oxidation and DNA Hole Injection. Photochemistry and Photobiology, 2010, 86, 563-570.	2.5	3
191	Phenoxy Radical Reactivity of Nucleic Acids: Practical Implications for Biotinylation. ChemBioChem, 2021, 22, 1400-1404.	2.6	3
192	Binding and Reaction of Calicheamicin and Other Enediyne Antibiotics with DNA. , 0, , 609-642.		2
193	Chapter 2 Diverse Mechanisms of Endogenous Nucleobase Deamination in DNA and RNA. Advances in Molecular Toxicology, 2006, 1, 25-63.	0.4	2
194	Pantoea Bacteriophage vB_PagS_MED16—A Siphovirus Containing a 2′-Deoxy-7-amido-7-deazaguanosine-Modified DNA. International Journal of Molecular Sciences, 2021, 22, 7333.	4.1	2
195	Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA-binding site. Journal of Biological Chemistry, 2022, 298, 101571.	3.4	2
196	Nanopore Sequencing for Detection and Characterization of Phosphorothioate Modifications in Native DNA Sequences. Frontiers in Microbiology, 2022, 13, 871937.	3.5	2
197	Mechanisms of target selection by DNA-damaging chemicals: studies with enediyne anticancer drugs. International Archives of Occupational and Environmental Health, 1996, 68, 408-414.	2.3	2
198	Technologies for Detection of DNA Damage and Mutations. Edited by Gerd P. Pfeifer. Photochemistry and Photobiology, 1997, 65, 603-604.	2.5	1

#	Article	IF	CITATIONS
199	Abstracts, American Chemical Society Division of Chemical Toxicology, 224th ACS National Meeting, Boston, Massachusetts, August 18â^22, 2002. Chemical Research in Toxicology, 2002, 15, 1652-1681.	3.3	1
200	The Intrinsic Flexibility and Drug-Induced Bending of Calicheamicin DNA Targets. , 1997, , 23-36.		1
201	Oxidatively Damaged DNA and Inflammation. , 2007, , 188-206.		1
202	Highlights from a Symposium on the Mechanisms of Action of Cytotoxic Agents. Chemical Research in Toxicology, 2000, 13, 933-935.	3.3	0
203	Abstracts, American Chemical Society Division of Chemical Toxicology, 228th ACS National Meeting, Philadelphia, Pennsylvania, August 22â^26, 2004. Chemical Research in Toxicology, 2004, 17, 1757-1783.	3.3	0
204	The road less traveled: A new phosphorothioate antiviral defense mechanism discovered in Archaea. Synthetic and Systems Biotechnology, 2019, 4, 132-133.	3.7	0
205	Backbone resonance assignment for the full length tRNA-(N1G37) methyltransferase of Pseudomonas aeruginosa. Biomolecular NMR Assignments, 2019, 13, 327-332.	0.8	0
206	Strategien zur Vermeidung von Artefakten in der massenspektrometrischen Epitranskriptomanalytik. Angewandte Chemie, 2021, 133, 24078.	2.0	0
207	Beyond the Central Dogma: The tRNA epitranscriptome and an alternative genetic code tune translation during stress in eukaryotes, prokaryotes and viral infections. FASEB Journal, 2018, 32, 381.4.	0.5	0