Francesco Moccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia, 2016, 30, 431-438.	7.2	216
2	Vascular Endothelial Growth Factor Stimulates Endothelial Colony Forming Cells Proliferation and Tubulogenesis by Inducing Oscillations in Intracellular Ca2+ Concentration. Stem Cells, 2011, 29, 1898-1907.	3.2	140
3	Stim and Orai proteins in neuronal Ca2+ signaling and excitability. Frontiers in Cellular Neuroscience, 2015, 9, 153.	3.7	135
4	Store-Operated Ca2+ Entry Is Remodelled and Controls In Vitro Angiogenesis in Endothelial Progenitor Cells Isolated from Tumoral Patients. PLoS ONE, 2012, 7, e42541.	2.5	121
5	COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience, 2020, 42, 1021-1049.	4.6	115
6	Store-Dependent Ca2+ Entry in Endothelial Progenitor Cells As a Perspective Tool to Enhance Cell-Based Therapy and Adverse Tumour Vascularization. Current Medicinal Chemistry, 2012, 19, 5802-5818.	2.4	108
7	Update on vascular endothelial Ca ²⁺ signalling: A tale of ion channels, pumps and transporters. World Journal of Biological Chemistry, 2012, 3, 127.	4.3	105
8	Store-Operated Ca ²⁺ Entry Is Expressed in Human Endothelial Progenitor Cells. Stem Cells and Development, 2010, 19, 1967-1981.	2.1	104
9	Calcium and fertilization: the beginning of life. Trends in Biochemical Sciences, 2004, 29, 400-408.	7.5	99
10	Endothelial Ca2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. International Journal of Molecular Sciences, 2019, 20, 3962.	4.1	94
11	Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radical Biology and Medicine, 2011, 51, 1765-1773.	2.9	83
12	A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: Implications for NAADP-dependent Ca2+ signalling. Cell Calcium, 2015, 57, 89-100.	2.4	78
13	Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Frontiers in Physiology, 2019, 10, 1618.	2.8	75
14	Canonical Transient Receptor Potential 3 Channel Triggers Vascular Endothelial Growth Factor-Induced Intracellular Ca ²⁺ Oscillations in Endothelial Progenitor Cells Isolated from Umbilical Cord Blood. Stem Cells and Development, 2013, 22, 2561-2580.	2.1	74
15	Endothelial Remodelling and Intracellular Calcium Machinery. Current Molecular Medicine, 2014, 14, 457-480.	1.3	72
16	The Role of Endothelial Ca2+ Signaling in Neurovascular Coupling: A View from the Lumen. International Journal of Molecular Sciences, 2018, 19, 938.	4.1	71
17	Hydrogen Sulfide and Endothelial Dysfunction: Relationship with Nitric Oxide. Current Medicinal Chemistry, 2014, 21, 3646-3661.	2.4	71
18	Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumor Biology, 2015, 36, 6603-6614.	1.8	66

#	Article	IF	CITATIONS
19	Acetylcholine induces intracellular Ca2+ oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium, 2017, 66, 33-47.	2.4	65
20	NAADP activates a Ca 2+ current that is dependent on Fâ€actin cytoskeleton. FASEB Journal, 2003, 17, 1-20.	0.5	62
21	Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 2013, 53, 77-84.	2.4	61
22	Ca ²⁺ Signalling in Endothelial Progenitor Cells: A Novel Means to Improve Cell-Based Therapy and Impair Tumour Vascularisation. Current Vascular Pharmacology, 2014, 12, 87-105.	1.7	61
23	The importance of calcium in the regulation of megakaryocyte function. Haematologica, 2014, 99, 769-778.	3.5	61
24	Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. Journal of Neuroscience, 2017, 37, 1340-1351.	3.6	61
25	Conjugated polymers optically regulate the fate of endothelial colony-forming cells. Science Advances, 2019, 5, eaav4620.	10.3	61
26	Enhanced Expression of Stim, Orai, and TRPC Transcripts and Proteins in Endothelial Progenitor Cells Isolated from Patients with Primary Myelofibrosis. PLoS ONE, 2014, 9, e91099.	2.5	60
27	Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors. Cell Calcium, 2014, 56, 225-234.	2.4	59
28	Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Communications Biology, 2020, 3, 222.	4.4	59
29	Epidermal growth factor induces intracellular Ca2 oscillations in microvascular endothelial cells. Journal of Cellular Physiology, 2003, 194, 139-150.	4.1	57
30	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	1.7	57
31	Targeting Stim and Orai Proteins as an Alternative Approach in Anticancer Therapy. Current Medicinal Chemistry, 2016, 23, 3450-3480.	2.4	55
32	Hydrogen Sulfide Regulates Intracellular Ca2+ Concentration in Endothelial Cells From Excised Rat Aorta. Current Pharmaceutical Biotechnology, 2011, 12, 1416-1426.	1.6	53
33	NAADP triggers the fertilization potential in starfish oocytes. Cell Calcium, 2004, 36, 515-524.	2.4	52
34	Ca ²⁺ Signalling in Endothelial Progenitor Cells: Friend or Foe?. Journal of Cellular Physiology, 2016, 231, 314-327.	4.1	52
35	Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood, 2020, 135, 133-144.	1.4	52
36	Store-Operated Ca2+Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma. BioMed Research International, 2014, 2014, 1-19.	1.9	51

#	Article	IF	CITATIONS
37	Constitutive Store-Operated Ca ²⁺ Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells. Stem Cells and Development, 2016, 25, 301-319.	2.1	51
38	Arachidonic acid-evoked Ca2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascular Pharmacology, 2016, 87, 159-171.	2.1	51
39	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	3.5	51
40	Ca2+-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients. BMC Surgery, 2013, 13, S40.	1.3	49
41	Ca2+ uptake by the endoplasmic reticulum Ca2+-ATPase in rat microvascular endothelial cells. Biochemical Journal, 2002, 364, 235-244.	3.7	47
42	Dysregulation of VEGF-induced proangiogenic Ca2+ oscillations in primary myelofibrosis-derived endothelial colony-forming cells. Experimental Hematology, 2015, 43, 1019-1030.e3.	0.4	46
43	Orai1 and Transient Receptor Potential Channels as Novel Molecular Targets to Impair Tumor Neovascularization in Renal Cell Carcinoma and other Malignancies. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 296-312.	1.7	46
44	Ca2+ signaling in injured in situ endothelium of rat aorta. Cell Calcium, 2008, 44, 298-309.	2.4	45
45	A Functional Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Is Expressed in Human Endothelial Progenitor Cells. Journal of Cellular Physiology, 2015, 230, 95-104.	4.1	45
46	Endothelial Ca2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. International Journal of Molecular Sciences, 2018, 19, 217.	4.1	45
47	Endolysosomal Ca2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind!. Cancers, 2019, 11, 27.	3.7	45
48	Glutamate triggers intracellular Ca ²⁺ oscillations and nitric oxide release by inducing NAADP―and InsP ₃ â€dependent Ca ²⁺ release in mouse brain endothelial cells. Journal of Cellular Physiology, 2019, 234, 3538-3554.	4.1	45
49	P2Y1 and P2Y2 Receptor-Operated Ca2+ Signals in Primary Cultures of Cardiac Microvascular Endothelial Cells. Microvascular Research, 2001, 61, 240-252.	2.5	44
50	The M-phase-promoting Factor Modulates the Sensitivity of the Ca2+ Stores to Inositol 1,4,5-Trisphosphate via the Actin Cytoskeleton. Journal of Biological Chemistry, 2003, 278, 42505-42514.	3.4	44
51	NAADP and InsP3 play distinct roles at fertilization in starfish oocytes. Developmental Biology, 2006, 294, 24-38.	2.0	44
52	The Mechanism of Injury-Induced Intracellular Calcium Concentration Oscillations in the Endothelium of Excised Rat Aorta. Journal of Vascular Research, 2012, 49, 65-76.	1.4	44
53	How to utilize Ca2+signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach?. BMC Surgery, 2013, 13, S46.	1.3	44
54	Honey-Mediated Wound Healing: H2O2 Entry through AQP3 Determines Extracellular Ca2+ Influx. International Journal of Molecular Sciences, 2019, 20, 764.	4.1	44

#	Article	IF	CITATIONS
55	Hematopoietic Progenitor and Stem Cells Circulate by Surfing on Intracellular Ca2+ Waves: A Novel Target for Cell-based Therapy and Anti-cancer Treatment?. Current Signal Transduction Therapy, 2012, 7, 161-176.	0.5	41
56	VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget, 2017, 8, 95223-95246.	1.8	41
57	Stromal Cell-Derived Factor-1α Promotes Endothelial Colony-Forming Cell Migration Through the Ca ²⁺ -Dependent Activation of the Extracellular Signal-Regulated Kinase 1/2 and Phosphoinositide 3-Kinase/AKT Pathways. Stem Cells and Development, 2018, 27, 23-34.	2.1	41
58	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers, 2019, 11, 542.	3.7	41
59	Old and New Gasotransmitters in the Cardiovascular System: Focus on the Role of Nitric Oxide and Hydrogen Sulfide in Endothelial Cells and Cardiomyocytes. Current Pharmaceutical Biotechnology, 2011, 12, 1406-1415.	1.6	39
60	May the remodeling of the Ca2+ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1958-1973.	4.1	38
61	Muscarinic M5 receptors trigger acetylcholineâ€induced Ca ²⁺ signals and nitric oxide release in human brain microvascular endothelial cells. Journal of Cellular Physiology, 2019, 234, 4540-4562.	4.1	38
62	Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells, 2020, 9, 1341.	4.1	36
63	Stim and Orai mediate constitutive Ca2+ entry and control endoplasmic reticulum Ca2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget, 2018, 9, 31098-31119.	1.8	36
64	Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cellular and Molecular Life Sciences, 2020, 77, 2235-2253.	5.4	32
65	Pharmacological characterization of NAADP-induced Ca2+ signals in starfish oocytes. Biochemical and Biophysical Research Communications, 2006, 348, 329-336.	2.1	31
66	Reactive Oxygen Species and Endothelial Ca2+ Signaling: Brothers in Arms or Partners in Crime?. International Journal of Molecular Sciences, 2021, 22, 9821.	4.1	31
67	Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. International Journal of Molecular Sciences, 2020, 21, 7406.	4.1	30
68	Cardiac Microvascular Endothelial Cells Express a Functional Ca ²⁺ -Sensing Receptor. Journal of Vascular Research, 2009, 46, 73-82.	1.4	29
69	TRPC3â€mediated Ca ²⁺ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. Journal of Cellular Physiology, 2018, 233, 3901-3917.	4.1	29
70	Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration?. International Journal of Molecular Sciences, 2019, 20, 3986.	4.1	29
71	Arachidonic Acid Evokes an Increase in Intracellular Ca2+ Concentration and Nitric Oxide Production in Endothelial Cells from Human Brain Microcirculation. Cells, 2019, 8, 689.	4.1	28
72	Histamine induces intracellular Ca ²⁺ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. Journal of Cellular Physiology, 2020, 235, 1515-1530.	4.1	28

#	Article	IF	CITATIONS
73	Generation and usage of aequorin lentiviral vectors for Ca2+ measurement in sub-cellular compartments of hard-to-transfect cells. Cell Calcium, 2016, 59, 228-239.	2.4	27
74	Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). International Journal of Molecular Sciences, 2020, 21, 216.	4.1	26
75	Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Research, 2021, 168, 105581.	7.1	26
76	Intracellular Ca ²⁺ Signals to Reconstruct A Broken Heart: Still A Theoretical Approach?. Current Drug Targets, 2015, 16, 793-815.	2.1	26
77	Liposomes as a Putative Tool to Investigate NAADP Signaling in Vasculogenesis. Journal of Cellular Biochemistry, 2017, 118, 3722-3729.	2.6	25
78	Nitroso-Redox Balance and Modulation of Basal Myocardial Function: An Update from the Italian Society of Cardiovascular Research (SIRC). Current Drug Targets, 2015, 16, 895-903.	2.1	25
79	Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in <i>Octopus vulgaris</i> . Journal of Experimental Biology, 2013, 216, 2229-2237.	1.7	24
80	Endoplasmic Reticulum Ca ²⁺ Handling and Apoptotic Resistance in Tumorâ€Đerived Endothelial Colony Forming Cells. Journal of Cellular Biochemistry, 2016, 117, 2260-2271.	2.6	24
81	The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Critical Reviews in Oncology/Hematology, 2018, 132, 89-99.	4.4	24
82	Platelet-derived extracellular vesicles regulate cell cycle progression and cell migration in breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118886.	4.1	23
83	Deletion of calcineurin from GFAPâ€expressing astrocytes impairs excitability of cerebellar and hippocampal neurons through astroglial Na ⁺ /K ⁺ ATPase. Glia, 2020, 68, 543-560.	4.9	22
84	Nicotinic acid adenine dinucleotide phosphate activates twoâ€pore channel TPC1 to mediate lysosomal Ca ²⁺ release in endothelial colonyâ€forming cells. Journal of Cellular Physiology, 2021, 236, 688-705.	4.1	22
85	Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Current Medicinal Chemistry, 2020, 27, 240-257.	2.4	22
86	Angiogenesis and Vasculogenesis in Health and Disease. BioMed Research International, 2015, 2015, 1-2.	1.9	21
87	Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. European Journal of Cancer, 2017, 77, 155-164.	2.8	19
88	Targeting Endolysosomal Two-Pore Channels to Treat Cardiovascular Disorders in the Novel COronaVIrus Disease 2019. Frontiers in Physiology, 2021, 12, 629119.	2.8	19
89	Manipulating Intracellular Ca2+ Signals to Stimulate Therapeutic Angiogenesis in Cardiovascular Disorders. Current Pharmaceutical Biotechnology, 2018, 19, 686-699.	1.6	19
90	Conjugated polymers mediate intracellular Ca2+ signals in circulating endothelial colony forming cells through the reactive oxygen species-dependent activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Cell Calcium, 2022, 101, 102502.	2.4	19

#	Article	IF	CITATIONS
91	Phosphatidylethanolamine Induces an Antifibrotic Phenotype in Normal Human Lung Fibroblasts and Ameliorates Bleomycin-Induced Lung Fibrosis in Mice. International Journal of Molecular Sciences, 2018, 19, 2758.	4.1	18
92	Neuronal Activity-Dependent Activation of Astroglial Calcineurin in Mouse Primary Hippocampal Cultures. International Journal of Molecular Sciences, 2018, 19, 2997.	4.1	18
93	Endolysosomal Ca2+ signaling in cardiovascular health and disease. International Review of Cell and Molecular Biology, 2021, 363, 203-269.	3.2	18
94	The human amniotic fluid stem cell secretome triggers intracellular Ca ²⁺ oscillations, NFâ€₽B nuclear translocation and tube formation in human endothelial colonyâ€forming cells. Journal of Cellular and Molecular Medicine, 2021, 25, 8074-8086.	3.6	18
95	Extracellular vesicles (EVs) in ischemic conditioning and angiogenesis: Focus on endothelial derived EVs. Vascular Pharmacology, 2021, 140, 106873.	2.1	18
96	NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium, 2021, 99, 102454.	2.4	18
97	Ca2+ signalling and membrane current activated by cADPr in starfish oocytes. Pflugers Archiv European Journal of Physiology, 2003, 446, 541-552.	2.8	17
98	Flow-activated Na+and K+Current in Cardiac Microvascular Endothelial Cells. Journal of Molecular and Cellular Cardiology, 2000, 32, 1589-1593.	1.9	16
99	Na+–Ca2+ exchanger contributes to Ca2+extrusion in ATP-stimulated endothelium of intact rat aorta. Biochemical and Biophysical Research Communications, 2010, 395, 126-130.	2.1	16
100	The Plant Hormone Abscisic Acid Is a Prosurvival Factor in Human and Murine Megakaryocytes. Journal of Biological Chemistry, 2017, 292, 3239-3251.	3.4	16
101	Endothelial signaling at the core of neurovascular coupling: The emerging role of endothelial inward-rectifier K+ (Kir2.1) channels and N-methyl-d-aspartate receptors in the regulation of cerebral blood flow. International Journal of Biochemistry and Cell Biology, 2021, 135, 105983.	2.8	16
102	Type 2 Diabetes Alters Intracellular Ca2+ Handling in Native Endothelium of Excised Rat Aorta. International Journal of Molecular Sciences, 2020, 21, 250.	4.1	15
103	Hydrogen Sulfide-Evoked Intracellular Ca2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers, 2020, 12, 3338.	3.7	15
104	Basal Nonselective Cation Permeability in Rat Cardiac Microvascular Endothelial Cells. Microvascular Research, 2002, 64, 187-197.	2.5	14
105	Pre―and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the †presynaptic bags'. European Journal of Neuroscience, 2007, 26, 2196-2203.	2.6	14
106	Supporting data on inÂvitro cardioprotective and proliferative paracrine effects by the human amniotic fluid stem cell secretome. Data in Brief, 2019, 25, 104324.	1.0	14
107	Characterization of Novel Cytoplasmic PARP in the Brain of <i>Octopus vulgaris</i> . Biological Bulletin, 2012, 222, 176-181.	1.8	13
108	Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. Advances in Experimental Medicine and Biology, 2020, 1131, 1013-1030.	1.6	13

#	Article	IF	CITATIONS
109	A bidirectional crosstalk between glioblastoma and brain endothelial cells potentiates the angiogenic and proliferative signaling of sphingosine-1-phosphate in the glioblastoma microenvironment. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1179-1192.	2.4	12
110	Latrunculin A depolarizes starfish oocytes. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 845-852.	1.8	11
111	Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. International Journal of Molecular Sciences, 2016, 17, 2055.	4.1	11
112	[Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cellular and Molecular Neurobiology, 2021, 41, 563-587.	3.3	11
113	The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvascular Research, 2021, 138, 104189.	2.5	11
114	Ca2+ Signalling in Damaged Endothelium: Do Connexin Hemichannels Aid in Filling the Gap?. Current Drug Therapy, 2010, 5, 277-287.	0.3	10
115	Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. Journal of Autoimmunity, 2020, 112, 102486.	6.5	10
116	CABAA- and AMPA-like receptors modulate the activity of an identified neuron within the central pattern generator of the pond snail Lymnaea stagnalis. Invertebrate Neuroscience, 2009, 9, 29-41.	1.8	9
117	Towards Novel Geneless Approaches for Therapeutic Angiogenesis. Frontiers in Physiology, 2020, 11, 616189.	2.8	8
118	Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 874043.	3.7	8
119	Targeting endothelial ion signalling to rescue cerebral blood flow in cerebral disorders. Vascular Pharmacology, 2022, 145, 106997.	2.1	8
120	Optical excitation of organic semiconductors as a highly selective strategy to induce vascular regeneration and tissue repair. Vascular Pharmacology, 2022, 144, 106998.	2.1	8
121	Fine structural detection of calcium ions by photoconversion. European Journal of Histochemistry, 2016, 60, 2695.	1.5	7
122	Kinetic and Angiogenic Activity of Circulating Endothelial Colony Forming Cells in Patients with Infantile Haemangioma Receiving Propranolol. Thrombosis and Haemostasis, 2019, 119, 274-284.	3.4	7
123	Remodelling of the Ca2+ Toolkit in Tumor Endothelium as a Crucial Responsible for the Resistance to Anticancer Therapies. Current Signal Transduction Therapy, 2017, 12, 3-18.	0.5	7
124	Store-Operated Ca2+ Entry Is Up-Regulated in Tumour-Infiltrating Lymphocytes from Metastatic Colorectal Cancer Patients. Cancers, 2022, 14, 3312.	3.7	7
125	Expression and function of toll-like receptors in human circulating endothelial colony forming cells. Immunology Letters, 2015, 168, 98-104.	2.5	6
126	Anti-Inflammatory Properties of Bellevalia saviczii Root Extract and Its Isolated Homoisoflavonoid (Dracol) Are Mediated by Modification on Calcium Signaling. Molecules, 2019, 24, 3376.	3.8	6

#	Article	IF	CITATIONS
127	Polychlorinated biphenyls reduce the kinematics contractile properties of embryonic stem cells-derived cardiomyocytes by disrupting their intracellular Ca2+ dynamics. Scientific Reports, 2018, 8, 17909.	3.3	5
128	Targeting Calcium Signalling in Malignant Mesothelioma. Cancers, 2019, 11, 1839.	3.7	5
129	Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer's disease. Molecular Neurobiology, 2021, 58, 2824-2835.	4.0	5
130	Ablation of collagen VI leads to the release of platelets with altered function. Blood Advances, 2021, 5, 5150-5163.	5.2	5
131	Knocking out TMEM38B in human foetal osteoblasts hFOB 1.19 by CRISPR/Cas9: A model for recessive OI type XIV. PLoS ONE, 2021, 16, e0257254.	2.5	5
132	Ca2+ Signalling in Damaged Endothelium and Arterial Remodelling: Do Connexin Hemichannels Provide a Suitable Target to Prevent In-stent Restenosis?. Current Drug Therapy, 2012, 7, 268-280.	0.3	4
133	Lost in phototransduction a few facts and hypotheses on cephalopod photoresponse. Frontiers in Bioscience - Scholar, 2009, S1, 319-328.	2.1	4
134	Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts. PLoS ONE, 2015, 10, e0134564.	2.5	3
135	Automated Intracellular Calcium Profiles Extraction from Endothelial Cells Using Digital Fluorescence Images. International Journal of Molecular Sciences, 2018, 19, 3440.	4.1	3
136	Editorial: Advances and Current Challenges in Calcium Signaling Within the Cardiovascular System. Frontiers in Physiology, 2021, 12, 696315.	2.8	2
137	Embryonic Stem Cells for Cardiac Regeneration. Pancreatic Islet Biology, 2016, , 9-29.	0.3	1
138	Abnormal Regulation of Intracellular Calcium in Human Megakaryocytes Contributes to the Pathophysiology of Calr-Mutant Myeloproliferative Neoplasms. Blood, 2018, 132, 1782-1782.	1.4	1
139	Novel molecular insights and potential approaches for targeting hypertrophic cardiomyopathy: Focus on coronary modulators. Vascular Pharmacology, 2022, 145, 107003.	2.1	1
140	Calcium and fertilization: the beginning of life. Trends in Biochemical Sciences, 2004, 29, 571.	7.5	0
141	Acetylcholine induces nitric oxide production by inducing intracellular Ca2+ oscillations in mouse brain endothelial cells. Vascular Pharmacology, 2015, 75, 70.	2.1	0
142	Endothelial dysfunction in patients with spontaneous coronary artery dissection: another brick in the failing coronary wall?. International Journal of Cardiology, 2020, 316, 52-53.	1.7	0
143	Conjugated Polymers Optically Regulate the Fate of Endothelial Colony Forming Cells. Biophysical Journal, 2020, 118, 478a.	0.5	0
144	NEUROVASCULAR COUPLING IN THE CEREBELLAR GRANULAR LAYER. Frontiers in Cellular Neuroscience, 0,	3.7	0