Takeyoshi Uchida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185429/publications.pdf

Version: 2024-02-01

933447 996975 37 256 10 15 citations g-index h-index papers 37 37 37 92 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Investigation of Output Signal from Cavitation Sensor by Dissolved Oxygen Level and Sonochemical Luminescence. Japanese Journal of Applied Physics, 2010, 49, 07HE03.	1.5	23
2	Frequency characteristics of receiving sensitivity and waveform of an anti-acoustic cavitation hydrophone. Japanese Journal of Applied Physics, 2014, 53, 07KE06.	1.5	22
3	Effects of Ultrasound Exposure Time on Nanometer-Sized Diamond Particles Dispersion. Japanese Journal of Applied Physics, 2009, 48, 07GH03.	1.5	17
4	Estimation of Cavitation Sensor with Hydrothermally Synthesized Lead Zirconate Titanate Film on Titanium Cylindrical Pipe: Spatial Distribution of Acoustic Cavitation Field and Basic Characteristics of Cavitation Sensor. Japanese Journal of Applied Physics, 2011, 50, 07HE02.	1.5	17
5	Basic Study on Dispersion and Surface Modification of Diamond Powders by Sonochemical Reaction. Japanese Journal of Applied Physics, 2003, 42, 2967-2970.	1.5	14
6	Measurement of Amount of Generated Acoustic Cavitation: Investigation of Spatial Distribution of Acoustic Cavitation Generation Using Broadband Integrated Voltage. Japanese Journal of Applied Physics, 2011, 50, 07HE01.	1.5	14
7	Improving dispersion of nanometer-size diamond particles by acoustic cavitation. Ultrasonics, 2006, 44, e473-e476.	3.9	12
8	Absolute Hydrophone Calibration to 40 MHz Using Ultrasonic Far-Field. Materials Transactions, 2014, 55, 1030-1033.	1.2	12
9	Measurement of Amount of Generated Acoustic Cavitation: Investigation of Spatial Distribution of Acoustic Cavitation Generation Using Broadband Integrated Voltage. Japanese Journal of Applied Physics, 2011, 50, 07HE01.	1.5	12
10	Improvement of Dispersibility of Nanosize Diamond by Sonochemical Reaction–Relationships among Acoustic Intensity, Disaggregation, and Surface Modification–. Japanese Journal of Applied Physics, 2005, 44, 4553-4557.	1.5	10
11	Development of Ultrasound Exposure System of Four Piezoelectric Ceramic Vibrators with Operating Frequency of 150 kHz for Dispersion of Nanometer-Sized Diamond Particles. Japanese Journal of Applied Physics, 2008, 47, 4115-4118.	1.5	10
12	Quantitative evaluation of ultrasonic cleaning ability using acoustic cavitation signal. Japanese Journal of Applied Physics, 2021, 60, SDDD04.	1.5	10
13	Characterization of output signal from hollow cylindrical cavitation sensor. Acoustical Science and Technology, 2010, 31, 199-201.	0.5	10
14	Trial Fabrication of Needle-Type Hydrophone with Taper-Type Structure using Hydrothermally Synthesized Lead Zirconate Titanate. Japanese Journal of Applied Physics, 2008, 47, 4215-4219.	1.5	9
15	Estimation of Cavitation Sensor with Hydrothermally Synthesized Lead Zirconate Titanate Film on Titanium Cylindrical Pipe: Spatial Distribution of Acoustic Cavitation Field and Basic Characteristics of Cavitation Sensor. Japanese Journal of Applied Physics, 2011, 50, 07HE02.	1.5	9
16	Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method. Japanese Journal of Applied Physics, 2013, 52, 07HC01.	1.5	8
17	Development of high ultrasonic power measurement technique by calorimetric method using water as heating elements for high ultrasonic power standard. Acoustical Science and Technology, 2015, 36, 445-448.	0.5	7
18	Measurement of Spatial Distribution in Vertical Direction of Cavitation Generation by Using High Resolution Cavitation Sensor. Japanese Journal of Applied Physics, 2012, 51, 07GD03.	1.5	6

#	Article	IF	CITATIONS
19	Measurement of Spatial Distribution in Vertical Direction of Cavitation Generation by Using High Resolution Cavitation Sensor. Japanese Journal of Applied Physics, 2012, 51, 07GD03.	1.5	5
20	Ultrasonic power measurement by calorimetric method using water as heating material., 2013,,.		5
21	Cavitation sensor with hydrothermally synthesized lead zirconate titanate polycrystalline film deposited on cylindrical titanium pipe: Estimation of acoustic cavitation field and basic characteristics of cavitation sensor. , 2012, , .		4
22	Experimental evaluation of high-intensity ultrasound source system using acoustic waveguide for calibration of hydrophone. Japanese Journal of Applied Physics, 2017, 56, 07JF19.	1.5	4
23	Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry. Japanese Journal of Applied Physics, 2018, 57, 07LC04.	1.5	4
24	Absolute calibration of membrane hydrophones up to 40 MHz in ultrasonic far-field., 2012,,.		3
25	Hydrophone with hydrothermally deposited lead zirconate titanate poly-crystalline film on titanium film as acoustic receiving surface for estimation of high power acoustic field by HIFU., 2010,,.		2
26	Characterization of hydrophone with hydrothermal PZT thick film vibrator and Ti front layer for measurement in high intensity therapeutic ultrasound. , 2013, , .		2
27	Effect of surface modification of titanium substrate by anodic oxidation on hydrothermally synthesized PZT poly-crystalline film. , 2008, , .		1
28	Design of anti cavitation hydrophone by deposition of hydrothermally synthesized lead zirconate titanate poly-crystalline film on reverse surface of titanium film front layer. , 2011 , , .		1
29	Cavitation sensor with hydrothermally synthesized lead zirconate titanate poly-crystalline film deposited on Ti cylindrical hollow pipe. , 2011, , .		1
30	Durability test and observation on non-linear distortion in output waveform of anti-cavitation hydrophone in high intensity ultrasound. , 2014, , .		1
31	Basic study on dispersion and surface modification of diamond powders by ultrasound exposure. Acoustical Science and Technology, 2003, 24, 413-414.	0.5	1
32	P3G-2 Effect of Ultrasound Exposure in Standing Wave Sound Field on Isoelectric Point of Nanometer Sized Diamond Particles for Abrasive Agent. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
33	Fundamental investigation of novel sono-reactor with 16 piezoelectric elements & amp; $\pm x2014$; Estimation of reaction field with sono-chemical luminescence., 2010,,.		0
34	A study on measurement technique for amount of generated acoustic cavitation-investigation of broadband integrated voltage by comparing with sound pressure and sonochemical luminescence , 2012, , .		0
35	Study on cavitation sensor with hydrothermally deposited lead zirconate titanate film-Effect of integration range of BIV on the measured results. , 2012 , , .		0
36	Study on spatial distribution of acoustic cavitation generation using high resolution cavitation sensor. , $2012, , .$		0

TAKEYOSHI UCHIDA

#	Article	IF	CITATIONS
37	KN.U-K2 International Laboratory Comparison of Ultrasound Power Measurements Emitted from an Ultrasonic Transducer. Journal of the Korean Physical Society, 2018, 72, 366-371.	0.7	0