List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183838/publications.pdf Version: 2024-02-01

SUGAN I RAMUS

#	Article	IF	CITATIONS
1	Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case–control studies. Lancet Oncology, The, 2012, 13, 385-394.	10.7	753
2	Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 2010, 20, 440-446.	5.5	740
3	Association Between <emph type="ital">BRCA1</emph> and <emph type="ital">BRCA2 Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer. JAMA - Journal of the American Medical Association, 2012, 307, 382.</emph 	7.4	546
4	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	2.5	513
5	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
6	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
7	Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. Lancet Oncology, The, 2013, 14, 853-862.	10.7	335
8	GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.	21.4	326
9	A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nature Genetics, 2010, 42, 874-879.	21.4	321
10	Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. Journal of the National Cancer Institute, 2015, 107, .	6.3	311
11	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	21.4	309
12	Multiple Loci With Different Cancer Specificities Within the 8q24 Gene Desert. Journal of the National Cancer Institute, 2008, 100, 962-966.	6.3	306
13	An Epigenetic Signature in Peripheral Blood Predicts Active Ovarian Cancer. PLoS ONE, 2009, 4, e8274.	2.5	291
14	A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nature Genetics, 2009, 41, 996-1000.	21.4	276
15	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
16	Contribution of Germline Mutations in the <i>RAD51B</i> , <i>RAD51C</i> , and <i>RAD51D</i> Genes to Ovarian Cancer in the Population. Journal of Clinical Oncology, 2015, 33, 2901-2907.	1.6	266
17	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
18	Dose-Response Association of CD8 ⁺ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncology, 2017, 3, e173290.	7.1	260

#	Article	IF	CITATIONS
19	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
20	Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2017, 109, .	6.3	242
21	Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nature Genetics, 2010, 42, 880-884.	21.4	235
22	Mutational spectrum in a worldwide study of 29,700 families with <i>BRCA1</i> or <i>BRCA2</i> mutations. Human Mutation, 2018, 39, 593-620.	2.5	224
23	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
24	Aspirin, Nonaspirin Nonsteroidal Anti-inflammatory Drug, and Acetaminophen Use and Risk of Invasive Epithelial Ovarian Cancer: A Pooled Analysis in the Ovarian Cancer Association Consortium. Journal of the National Cancer Institute, 2014, 106, djt431-djt431.	6.3	186
25	An Immunohistochemical Algorithm for Ovarian Carcinoma Typing. International Journal of Gynecological Pathology, 2016, 35, 430-441.	1.4	180
26	The Contribution of <i>BRCA1</i> and <i>BRCA2</i> to Ovarian Cancer. Molecular Oncology, 2009, 3, 138-150.	4.6	178
27	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.9	169
28	Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocrine-Related Cancer, 2013, 20, 251-262.	3.1	169
29	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
30	Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.	12.8	144
31	Oral contraceptive use and ovarian cancer risk among carriers of BRCA1 or BRCA2 mutations. British Journal of Cancer, 2004, 91, 1911-1915.	6.4	138
32	Germline Mutation in <i>BRCA1</i> or <i>BRCA2</i> and Ten-Year Survival for Women Diagnosed with Epithelial Ovarian Cancer. Clinical Cancer Research, 2015, 21, 652-657.	7.0	138
33	Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General Population Women. Journal of the National Cancer Institute, 2018, 110, 714-725.	6.3	138
34	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
35	The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Human Molecular Genetics, 2014, 23, 4703-4709.	2.9	112
36	Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 1619-1630.	1.9	111

#	Article	IF	CITATIONS
37	Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. Journal of Pathology, 2007, 211, 286-295.	4.5	108
38	Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in <i>RAD51C</i> and <i>RAD51D</i> . Journal of the National Cancer Institute, 2020, 112, 1242-1250.	6.3	106
39	Common Breast Cancer Susceptibility Variants in <i>LSP1</i> and <i>RAD51L1</i> Are Associated with Mammographic Density Measures that Predict Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1156-1166.	2.5	101
40	The sex hormone system in carriers of BRCA1/2 mutations: a case-control study. Lancet Oncology, The, 2013, 14, 1226-1232.	10.7	98
41	Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nature Communications, 2013, 4, 1627.	12.8	98
42	Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene, 2004, 23, 5697-5702.	5.9	97
43	<i>BRCA1</i> and <i>BRCA2</i> Mutation Prevalence and Clinical Characteristics of a Population-Based Series of Ovarian Cancer Cases from Denmark. Clinical Cancer Research, 2008, 14, 3761-3767.	7.0	92
44	Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology, 2022, 40, 1529-1541.	1.6	90
45	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	5.0	88
46	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
47	Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS Genetics, 2010, 6, e1001183.	3.5	85
48	Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. International Journal of Cancer, 2000, 87, 317-321.	5.1	84
49	Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case–control studies. Cancer Causes and Control, 2013, 24, 989-1004.	1.8	84
50	Histopathology of familial ovarian tumors in women from families with and without germline BRCA1 mutations. Human Pathology, 2000, 31, 1420-1424.	2.0	82
51	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82
52	Efficient molecular subtype classification of highâ€grade serous ovarian cancer. Journal of Pathology, 2015, 236, 272-277.	4.5	81
53	Tagging Single Nucleotide Polymorphisms in Cell Cycle Control Genes and Susceptibility to Invasive Epithelial Ovarian Cancer. Cancer Research, 2007, 67, 3027-3035.	0.9	78
54	Genome-wide significant risk associations for mucinous ovarian carcinoma. Nature Genetics, 2015, 47, 888-897.	21.4	78

#	Article	IF	CITATIONS
55	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
56	Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study. Breast Cancer Research, 2009, 11, R80.	5.0	77
57	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	6.3	77
58	Common origins of MDA-MB-435 cells from various sources with those shown to have melonoma properties. Clinical and Experimental Metastasis, 2004, 21, 543-552.	3.3	76
59	Contribution of <i>BRCA1</i> and <i>BRCA2</i> mutations to inherited ovarian cancer. Human Mutation, 2007, 28, 1207-1215.	2.5	76
60	Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study. British Journal of Cancer, 2014, 111, 2297-2307.	6.4	76
61	<i>ESR1/SYNE1</i> Polymorphism and Invasive Epithelial Ovarian Cancer Risk: An Ovarian Cancer Association Consortium Study. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 245-250.	2.5	75
62	<i>LIN28B</i> Polymorphisms Influence Susceptibility to Epithelial Ovarian Cancer. Cancer Research, 2011, 71, 3896-3903.	0.9	75
63	Histopathology, FIGO Stage, and BRCA Mutation Status of Ovarian Cancers from the Gilda Radner Familial Ovarian Cancer Registry. International Journal of Gynecological Pathology, 2004, 23, 29-34.	1.4	74
64	Consortium analysis of 7 candidate SNPs for ovarian cancer. International Journal of Cancer, 2008, 123, 380-388.	5.1	73
65	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	5.0	71
66	Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 884-895.	1.9	71
67	Biomarker-Based Ovarian Carcinoma Typing: A Histologic Investigation in the Ovarian Tumor Tissue Analysis Consortium. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1677-1686.	2.5	70
68	Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. Journal of Pathology: Clinical Research, 2018, 4, 250-261.	3.0	70
69	Role of genetic polymorphisms and ovarian cancer susceptibility. Molecular Oncology, 2009, 3, 171-181.	4.6	69
70	Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. , 1999, 25, 91-96.		68
71	The clonal evolution of metastases from primary serous epithelial ovarian cancers. International Journal of Cancer, 2009, 124, 1579-1586.	5.1	68
72	Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. Human Molecular Genetics, 2015, 24, 5955-5964.	2.9	68

#	Article	IF	CITATIONS
73	Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis, 2006, 27, 2235-2242.	2.8	67
74	Association Between Single-Nucleotide Polymorphisms in Hormone Metabolism and DNA Repair Genes and Epithelial Ovarian Cancer: Results from Two Australian Studies and an Additional Validation Set. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2557-2565.	2.5	65
75	Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer. Clinical Cancer Research, 2017, 23, 1552-1563.	7.0	65
76	Single Nucleotide Polymorphisms in the <i>TP53</i> Region and Susceptibility to Invasive Epithelial Ovarian Cancer. Cancer Research, 2009, 69, 2349-2357.	0.9	63
77	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63
78	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	5.0	57
79	Tagging Single Nucleotide Polymorphisms in the BRIP1 Gene and Susceptibility to Breast and Ovarian Cancer. PLoS ONE, 2007, 2, e268.	2.5	54
80	Common alleles in candidate susceptibility genes associated with risk and development of epithelial ovarian cancer. International Journal of Cancer, 2011, 128, 2063-2074.	5.1	54
81	Combined and Interactive Effects of Environmental and GWAS-Identified Risk Factors in Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 880-890.	2.5	54
82	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.9	54
83	A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. Modern Pathology, 2019, 32, 1834-1846.	5.5	54
84	Molecular Classification of Epithelial Ovarian Cancer Based on Methylation Profiling: Evidence for Survival Heterogeneity. Clinical Cancer Research, 2019, 25, 5937-5946.	7.0	50
85	Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the ovarian cancer association consortium pooled analysis. British Journal of Cancer, 2008, 98, 282-288.	6.4	49
86	Vitamin D receptor rs2228570 polymorphism and invasive ovarian carcinoma risk: Pooled analysis in five studies within the Ovarian Cancer Association Consortium. International Journal of Cancer, 2011, 128, 936-943.	5.1	49
87	Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk. Cancer Research, 2019, 79, 505-517.	0.9	49
88	Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility "Hot-Spot― PLoS Genetics, 2010, 6, e1001016.	3.5	48
89	Functional Polymorphisms in the TERT Promoter Are Associated with Risk of Serous Epithelial Ovarian and Breast Cancers. PLoS ONE, 2011, 6, e24987.	2.5	48
90	Risk of Ovarian Cancer and the NF-Î⁰B Pathway: Genetic Association with <i>IL1A</i> and <i>TNFSF10</i> . Cancer Research, 2014, 74, 852-861.	0.9	48

#	Article	IF	CITATIONS
91	Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium. British Journal of Cancer, 2009, 100, 412-420.	6.4	47
92	The Role of KRAS rs61764370 in Invasive Epithelial Ovarian Cancer: Implications for Clinical Testing. Clinical Cancer Research, 2011, 17, 3742-3750.	7.0	47
93	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	2.5	47
94	Ovarian Cancer Risk Associated with Inherited Inflammation-Related Variants. Cancer Research, 2012, 72, 1064-1069.	0.9	45
95	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	2.5	44
96	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43
97	<i>PPM1D</i> Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations. Journal of the National Cancer Institute, 2016, 108, djv347.	6.3	43
98	Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clinical Cancer Research, 2020, 26, 5411-5423.	7.0	43
99	Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene. Oncotarget, 2017, 8, 50930-50940.	1.8	43
100	Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Human Molecular Genetics, 2009, 18, 2297-2304.	2.9	42
101	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	5.0	42
102	Predicting Clinical Outcome in Patients Diagnosed with Synchronous Ovarian and Endometrial Cancer. Clinical Cancer Research, 2008, 14, 5840-5848.	7.0	41
103	Ovarian cancer survival in Ashkenazi Jewish patients with BRCA1 and BRCA2 mutations. European Journal of Surgical Oncology, 2001, 27, 278-281.	1.0	40
104	Morphological predictors of BRCA1 germline mutations in young women with breast cancer. British Journal of Cancer, 2011, 104, 903-909.	6.4	40
105	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	6.3	40
106	Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Human Molecular Genetics, 2015, 24, 3595-3607.	2.9	40
107	Common Variants in RB1 Gene and Risk of Invasive Ovarian Cancer. Cancer Research, 2006, 66, 10220-10226.	0.9	39
108	Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis. British Journal of Cancer, 2009, 101, 1461-1468.	6.4	39

#	Article	IF	CITATIONS
109	Association Between Menopausal Estrogen-Only Therapy and Ovarian Carcinoma Risk. Obstetrics and Gynecology, 2016, 127, 828-836.	2.4	39
110	Microcell-Mediated Chromosome Transfer Identifies EPB41L3 as a Functional Suppressor of Epithelial Ovarian Cancers. Neoplasia, 2010, 12, 579-IN18.	5.3	38
111	Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. Journal of Medical Genetics, 2018, 55, 546-554.	3.2	38
112	Association between Common Germline Genetic Variation in 94 Candidate Genes or Regions and Risks of Invasive Epithelial Ovarian Cancer. PLoS ONE, 2009, 4, e5983.	2.5	38
113	Candidate Gene Analysis Using Imputed Genotypes: Cell Cycle Single-Nucleotide Polymorphisms and Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 935-944.	2.5	37
114	Evidence of a genetic link between endometriosis and ovarian cancer. Fertility and Sterility, 2016, 105, 35-43.e10.	1.0	37
115	Complete mutation detection using unlabeled chemical cleavage. Human Mutation, 1992, 1, 63-69.	2.5	36
116	COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Research, 2013, 15, 402.	5.0	36
117	Complex CGH alterations on chromosome arm 8p at candidate tumor suppressor gene loci in breast cancer cell lines. Cancer Genetics and Cytogenetics, 2005, 160, 134-140.	1.0	35
118	ABO blood group and risk of epithelial ovarian cancer within the Ovarian Cancer Association Consortium. Cancer Causes and Control, 2012, 23, 1805-1810.	1.8	35
119	Going to extremes: determinants of extraordinary response and survival in patients with cancer. Nature Reviews Cancer, 2019, 19, 339-348.	28.4	35
120	Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium. British Journal of Cancer, 2020, 123, 793-802.	6.4	35
121	Simultaneous screening for β-thalassemia mutations by chemical cleavage of mismatch. Genomics, 1991, 11, 48-53.	2.9	34
122	Ovarian cancer susceptibility alleles and risk of ovarian cancer in <i>BRCA1</i> and <i>BRCA2</i> mutation carriers. Human Mutation, 2012, 33, 690-702.	2.5	34
123	Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium. Clinical Cancer Research, 2015, 21, 5264-5276.	7.0	33
124	Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 395-404.	2.5	33
125	Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. Journal of Medical Genetics, 2022, 59, 632-643.	3.2	33
126	BRCA1/2 mutation status influences somatic genetic progression in inherited and sporadic epithelial ovarian cancer cases. Cancer Research, 2003, 63, 417-23.	0.9	33

#	Article	IF	CITATIONS
127	The Effects of Common Genetic Variants in Oncogenes on Ovarian Cancer Survival. Clinical Cancer Research, 2008, 14, 5833-5839.	7.0	32
128	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
129	Recruitment of newly diagnosed ovarian cancer patients proved challenging in a multicentre biobanking study. Journal of Clinical Epidemiology, 2011, 64, 525-530.	5.0	30
130	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30
131	Effects of Common Germ-Line Genetic Variation in Cell Cycle Genes on Ovarian Cancer Survival. Clinical Cancer Research, 2008, 14, 1090-1095.	7.0	29
132	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	2.5	28
133	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
134	Vascular endothelial growth factor gene polymorphisms and ovarian cancer survival. Gynecologic Oncology, 2010, 119, 479-483.	1.4	26
135	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
136	Enhanced <i>GAB2</i> Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1495-1503.	4.1	26
137	Population-based targeted sequencing of 54 candidate genes identifies <i>PALB2</i> as a susceptibility gene for high-grade serous ovarian cancer. Journal of Medical Genetics, 2021, 58, 305-313.	3.2	26
138	Cigarette smoking is associated with adverse survival among women with ovarian cancer: Results from a pooled analysis of 19 studies. International Journal of Cancer, 2017, 140, 2422-2435.	5.1	25
139	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
140	Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer. British Journal of Cancer, 2009, 100, 993-1001.	6.4	24
141	Genetic Variation in <i>TYMS</i> in the One-Carbon Transfer Pathway Is Associated with Ovarian Carcinoma Types in the Ovarian Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1822-1830.	2.5	24
142	Common variants at the <i>CHEK2</i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	2.8	24
143	Polymorphism in the <i>GALNT1</i> Gene and Epithelial Ovarian Cancer in Non-Hispanic White Women: The Ovarian Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 600-604.	2.5	23
144	A Nonsynonymous Polymorphism in <i>IRS1</i> Modifies Risk of Developing Breast and Ovarian Cancers in <i>BRCA1</i> and Ovarian Cancer in <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1362-1370.	2.5	23

#	Article	IF	CITATIONS
145	Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA. Human Genetics, 2014, 133, 481-497.	3.8	23
146	Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. British Journal of Cancer, 2017, 116, 524-535.	6.4	23
147	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	2.8	23
148	Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk. Human Molecular Genetics, 2011, 20, 2263-2272.	2.9	22
149	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	1.3	22
150	MyD88 and TLR4 Expression in Epithelial Ovarian Cancer. Mayo Clinic Proceedings, 2018, 93, 307-320.	3.0	22
151	Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus. Cancer Research, 2019, 79, 467-481.	0.9	22
152	Rare Germline Genetic Variants and the Risks of Epithelial Ovarian Cancer. Cancers, 2020, 12, 3046.	3.7	22
153	Large-Scale Evaluation of Common Variation in Regulatory T Cell–Related Genes and Ovarian Cancer Outcome. Cancer Immunology Research, 2014, 2, 332-340.	3.4	21
154	Refined cut-off for TP53 immunohistochemistry improves prediction of TP53 mutation status in ovarian mucinous tumors: implications for outcome analyses. Modern Pathology, 2021, 34, 194-206.	5.5	21
155	Estrogen Receptor Beta rs1271572 Polymorphism and Invasive Ovarian Carcinoma Risk: Pooled Analysis within the Ovarian Cancer Association Consortium. PLoS ONE, 2011, 6, e20703.	2.5	21
156	Mismatch repair gene polymorphisms and survival in invasive ovarian cancer patients. European Journal of Cancer, 2008, 44, 2259-2265.	2.8	20
157	Progesterone receptor gene polymorphisms and risk of endometriosis: results from an international collaborative effort. Fertility and Sterility, 2011, 95, 40-45.	1.0	20
158	A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival. BMC Cancer, 2011, 11, 119.	2.6	20
159	Analysis of Over 10,000 Cases Finds No Association between Previously Reported Candidate Polymorphisms and Ovarian Cancer Outcome. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 987-992.	2.5	20
160	The association between socioeconomic status and tumour stage at diagnosis of ovarian cancer: A pooled analysis of 18 case-control studies. Cancer Epidemiology, 2016, 41, 71-79.	1.9	20
161	Inherited Variants in Regulatory T Cell Genes and Outcome of Ovarian Cancer. PLoS ONE, 2013, 8, e53903.	2.5	20
162	MicroRNA Processing and Binding Site Polymorphisms Are Not Replicated in the Ovarian Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1793-1797.	2.5	19

#	Article	IF	CITATIONS
163	Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Human Genetics, 2016, 135, 741-756.	3.8	19
164	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
165	BRCA1 promoter deletions in young women with breast cancer and a strong family history: A population-based study. European Journal of Cancer, 2007, 43, 823-827.	2.8	18
166	Polymorphism in the <i>IL18</i> Gene and Epithelial Ovarian Cancer in Non-Hispanic White Women. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3567-3572.	2.5	18
167	Risk of ovarian cancer in women with first-degree relatives with cancer. Acta Obstetricia Et Gynecologica Scandinavica, 2009, 88, 449-456.	2.8	18
168	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
169	Genotype and Intellectual Phenotype in Untreated Phenylketonuria Patients. Pediatric Research, 1999, 45, 474-481.	2.3	18
170	Primary Ovarian Dysgerminoma in a Patient with a Germline BRCA1 Mutation. International Journal of Gynecological Pathology, 2000, 19, 390-394.	1.4	17
171	Functional complementation studies identify candidate genes and common genetic variants associated with ovarian cancer survival. Human Molecular Genetics, 2009, 18, 1869-1878.	2.9	17
172	Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Human Molecular Genetics, 2016, 25, 3600-3612.	2.9	17
173	Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction. PLoS ONE, 2016, 11, e0153844.	2.5	17
174	Illegitimate transcription of phenylalanine hydroxylase for detection of mutations in patients with phenylketonuria. Human Mutation, 1992, 1, 154-158.	2.5	16
175	LCC15-MB Cells are MDA-MB-435: A Review of Misidentified Breast and prostate cell lines. Clinical and Experimental Metastasis, 2004, 21, 535-541.	3.3	16
176	Consortium analysis of gene and gene–folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Molecular Nutrition and Food Research, 2014, 58, 2023-2035.	3.3	16
177	Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic Oncology, 2015, 136, 542-548.	1.4	15
178	Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. British Journal of Cancer, 2018, 118, 1123-1129.	6.4	15
179	Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2018, 47, 450-459.	1.9	15
180	Menopausal hormone therapy prior to the diagnosis of ovarian cancer is associated with improved survival. Gynecologic Oncology, 2020, 158, 702-709.	1.4	15

#	Article	IF	CITATIONS
181	Validated biomarker assays confirm that <scp>ARID1A</scp> loss is confounded with <scp>MMR</scp> deficiency, <scp>CD8⁺ TIL</scp> infiltration, and provides no independent prognostic value in endometriosisâ€associated ovarian carcinomas. Journal of Pathology, 2022, 256, 388-401.	4.5	15
182	A SPONTANEOUS MUTATION CAUSING UNSTABLE Hb HAMMERSMITH: DETECTION OF THE β42 TTT→TCT CHAN BY CCM AND DIRECT SEQUENCING. British Journal of Haematology, 1991, 79, 127-129.	ICE 2.5	14
183	Idiopathic slow-transit constipation is not associated with mutations of the RET proto-oncogene or GDNF. Diseases of the Colon and Rectum, 2000, 43, 851-857.	1.3	14
184	Association Study of Prostate Cancer Susceptibility Variants with Risks of Invasive Ovarian, Breast, and Colorectal Cancer. Cancer Research, 2008, 68, 8837-8842.	0.9	14
185	Eligibility for Magnetic Resonance Imaging Screening in the United Kingdom: Effect of Strict Selection Criteria and Anonymous DNA Testing on Breast Cancer Incidence in the MARIBS Study. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2123-2131.	2.5	14
186	Does the primary site really matter? Profiling mucinous ovarian cancers of uncertain primary origin (MO-CUP) to personalise treatment and inform the design of clinical trials. Gynecologic Oncology, 2018, 150, 527-533.	1.4	14
187	Variation in NF-κB Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1421-1427.	2.5	13
188	Use of common analgesic medications and ovarian cancer survival: results from a pooled analysis in the Ovarian Cancer Association Consortium. British Journal of Cancer, 2017, 116, 1223-1228.	6.4	13
189	Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget, 2016, 7, 72381-72394.	1.8	13
190	Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 217-228.	2.5	12
191	Chromosomes 6 and 18 induce neoplastic suppression in epithelial ovarian cancer cells. International Journal of Cancer, 2009, 124, 1037-1044.	5.1	11
192	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	2.5	10
193	Assessment of Multifactor Gene–Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 780-790.	2.5	10
194	History of Comorbidities and Survival of Ovarian Cancer Patients, Results from the Ovarian Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1470-1473.	2.5	10
195	Contribution of large genomic BRCA1 alterations to early-onset breast cancer selected for family history and tumour morphology: a report from The Breast Cancer Family Registry. Breast Cancer Research, 2011, 13, R14.	5.0	9
196	Clinical and Emergent Biomarkers and Their Relationship to the Prognosis of Ovarian Cancer. Oncology, 2016, 90, 59-68.	1.9	9
197	Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 446-454.	2.5	9
198	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	2.5	9

#	Article	IF	CITATIONS
199	Phenotype-directed analysis of genotype in early-onset, familial breast cancers. Pathology, 2006, 38, 520-527.	0.6	8
200	Screening for theBRCA1-ins6kbEx13mutation: potential for misdiagnosis. Human Mutation, 2007, 28, 525-526.	2.5	8
201	Genome-Wide Association Study for Ovarian Cancer Susceptibility Using Pooled DNA. Twin Research and Human Genetics, 2012, 15, 615-623.	0.6	8
202	Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. American Journal of Epidemiology, 2018, 187, 366-377.	3.4	8
203	Expanding Our Understanding of Ovarian Cancer Risk: The Role of Incomplete Pregnancies. Journal of the National Cancer Institute, 2021, 113, 301-308.	6.3	8
204	A polymorphism in the GALNT2 gene and ovarian cancer risk in four population based case-control studies. International Journal of Molecular Epidemiology and Genetics, 2010, 1, 272-7.	0.4	8
205	MCM3 is a novel proliferation marker associated with longer survival for patients with tubo-ovarian high-grade serous carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 855-871.	2.8	8
206	Gene Set Analysis of Survival Following Ovarian Cancer Implicates Macrolide Binding and Intracellular Signaling Genes. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 529-536.	2.5	7
207	Using tumour pathology to identify people at high genetic risk of breast and colorectal cancers. Pathology, 2012, 44, 89-98.	0.6	7
208	A splicing variant of <i>TERT</i> identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer. International Journal of Cancer, 2016, 139, 2646-2654.	5.1	7
209	Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents. British Journal of Cancer, 2021, 125, 265-276.	6.4	7
210	Single-Tube Chemical Cleavage of Mismatch: Successive Treatment with Hydroxylamine and Osmium Tetroxide. BioTechniques, 1996, 21, 216-220.	1.8	6
211	Integration of Population-Level Genotype Data with Functional Annotation Reveals Over-Representation of Long Noncoding RNAs at Ovarian Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 116-125.	2.5	6
212	Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Medicine, 2019, 8, 2503-2513.	2.8	6
213	Pleiotropy-guided transcriptome imputation from normal and tumor tissues identifies candidate susceptibility genes for breast and ovarian cancer. Human Genetics and Genomics Advances, 2021, 2, 100042.	1.7	6
214	Polymorphisms in Stromal Genes and Susceptibility to Serous Epithelial Ovarian Cancer: A Report from the Ovarian Cancer Association Consortium. PLoS ONE, 2011, 6, e19642.	2.5	5
215	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	1.8	5
216	CpG hotspot causes second mutation in codon 408 of the phenylalanine hydroxylase gene. Human Genetics, 1992, 90, 147-8.	3.8	3

#	Article	IF	CITATIONS
217	Mutations lvs4nt1, 47delCT, and G148S identified in the phenylalanine hydroxylase gene by RT-PCR of illegitimate transcripts and chemical cleavage of mismatch. Human Mutation, 1995, 6, 250-251.	2.5	3
218	No Evidence That Genetic Variation in the Myeloid-Derived Suppressor Cell Pathway Influences Ovarian Cancer Survival. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 420-424.	2.5	3
219	rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology. International Journal of Molecular Sciences, 2018, 19, 2473.	4.1	3
220	Offspring sex and risk of epithelial ovarian cancer: a multinational pooled analysis of 12 case–control studies. European Journal of Epidemiology, 2020, 35, 1025-1042.	5.7	2
221	Histopathology of familial ovarian tumors in women from families with and without germline BRCA1 mutations. Human Pathology, 2000, 31, 1420-1424.	2.0	2
222	High Prediagnosis Inflammation-Related Risk Score Associated with Decreased Ovarian Cancer Survival. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 443-452.	2.5	2
223	Functional polymorphisms in the TERT promoter are associated with risk of serious ovarian and breast cancer. Hereditary Cancer in Clinical Practice, 2012, 10, A86.	1.5	1
224	Somatic Genetic Development in Epithelial Ovarian Cancer. , 2009, , 215-246.		1
225	Polymorphism in the 3? untranslated region of the phenylalanine hydroxylase gene detected by enzyme mismatch cleavage: evolution of haplotypes. Human Genetics, 1995, 96, 741-743.	3.8	0
226	Functional complementation studies identify candidate genes and common genetic variants associated with ovarian cancer survival. Human Molecular Genetics, 2009, 18, 2928-2928.	2.9	0
227	Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1028-1031.	2.5	0
228	Abstract 2248: Environmental factors associated with residual disease after ovarian cancer primary cytoreduction surgery. Cancer Research, 2022, 82, 2248-2248.	0.9	0