Jada Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183316/publications.pdf

Version: 2024-02-01

		172457	155660
54	7,074 citations	29	55
papers	citations	h-index	g-index
E 7	57	-7	9722
57	57	57	8632
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	3
2	Soluble brain homogenates from diverse human and mouse sources preferentially seed diffuse $\hat{Al^2}$ plaque pathology when injected into newborn mouse hosts Free Neuropathology, 2022, 3, .	3.0	2
3	Anti-tau scFvs Targeted to the Cytoplasm or Secretory Pathway Variably Modify Pathology and Neurodegenerative Phenotypes. Molecular Therapy, 2021, 29, 859-872.	8.2	26
4	Photodynamic studies reveal rapid formation and appreciable turnover of tau inclusions. Acta Neuropathologica, 2021, 141, 359-381.	7.7	13
5	Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy. Molecular Neurobiology, 2020, 57, 1986-2001.	4.0	9
6	Exacerbation of tau pathology by preâ€existing amyloidosis in novel transgenic mice. Alzheimer's and Dementia, 2020, 16, e042291.	0.8	0
7	Diversity in AÎ ² deposit morphology and secondary proteome insolubility across models of Alzheimer-typeÂamyloidosis. Acta Neuropathologica Communications, 2020, 8, 43.	5.2	16
8	Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Scientific Reports, 2018, 8, 4049.	3.3	30
9	Analysis of spinal and muscle pathology in transgenic mice overexpressing wild-type and ALS-linked mutant MATR3. Acta Neuropathologica Communications, 2018, 6, 137.	5.2	20
10	Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biology, 2018, 16, e2006265.	5.6	44
11	Designing antibodies against LRRK2-targeted tau epitopes. PLoS ONE, 2018, 13, e0204367.	2.5	1
12	Differential induction of mutant SOD1 misfolding and aggregation by tau and \hat{l}_{\pm} -synuclein pathology. Molecular Neurodegeneration, 2018, 13, 23.	10.8	3
13	Changes in proteome solubility indicate widespread proteostatic disruption in mouse models of neurodegenerative disease. Acta Neuropathologica, 2018, 136, 919-938.	7.7	27
14	Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis. Molecular and Cellular Neurosciences, 2018, 92, 17-26.	2.2	11
15	Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. Journal of Comparative Neurology, 2016, 524, 2740-2752.	1.6	14
16	Generation of a new transgenic mouse model for assessment of tau gene silencing therapies. Alzheimer's Research and Therapy, 2016, 8, 36.	6.2	1
17	Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathologica, 2016, 131, 27-48.	7.7	147
18	Physiologically relevant factors influence tau phosphorylation by leucineâ€rich repeat kinase 2. Journal of Neuroscience Research, 2015, 93, 1567-1580.	2.9	18

#	Article	IF	Citations
19	Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy. PLoS ONE, 2015, 10, e0142144.	2.5	43
20	Inefficient induction and spread of seeded tau pathology in P301L mouse model of tauopathy suggests inherent physiological barriers to transmission. Acta Neuropathologica, 2015, 130, 303-305.	7.7	9
21	Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. Rna, 2015, 21, 1419-1432.	3.5	25
22	IFNâ€Î³ promotes Ï,, phosphorylation without affecting mature tangles. FASEB Journal, 2015, 29, 4384-4398.	0.5	23
23	Therapeutic and diagnostic challenges for frontotemporal dementia. Frontiers in Aging Neuroscience, 2014, 6, 204.	3.4	17
24	ERâ€"mitochondria associations are regulated by the VAPBâ€"PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nature Communications, 2014, 5, 3996.	12.8	463
25	Effects of the C57BL/6 strain background on tauopathy progression in the rTg4510 mouse model. Molecular Neurodegeneration, 2014, 9, 8.	10.8	25
26	Tau promotes neurodegeneration through global chromatin relaxation. Nature Neuroscience, 2014, 17, 357-366.	14.8	370
27	Understanding the role of progranulin in Alzheimer's disease. Nature Medicine, 2014, 20, 1099-1100.	30.7	9
28	Age-related decline in white matter integrity in a mouse model of tauopathy: an inÂvivo diffusion tensor magnetic resonance imaging study. Neurobiology of Aging, 2014, 35, 1364-1374.	3.1	58
29	Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling. PLoS ONE, 2014, 9, e86513.	2.5	23
30	In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l) reveals reduced neural activity in memory formation structures. Molecular Neurodegeneration, 2013, 8, 9.	10.8	35
31	Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathologica, 2013, 126, 39-50.	7.7	24
32	LRRK2 phosphorylates novel tau epitopes and promotes tauopathy. Acta Neuropathologica, 2013, 126, 809-827.	7.7	85
33	Unbiased screen reveals ubiquilin-1 and -2 highly associated with huntingtin inclusions. Brain Research, 2013, 1524, 62-73.	2.2	38
34	Atp $13a2$ -deficient mice exhibit neuronal ceroid lipofuscinosis, limited $\hat{l}\pm$ -synuclein accumulation and age-dependent sensorimotor deficits. Human Molecular Genetics, 2013, 22, 2067-2082.	2.9	124
35	Characteristics of TBS-Extractable Hyperphosphorylated Tau Species: Aggregation Intermediates in rTg4510 Mouse Brain. Journal of Alzheimer's Disease, 2012, 33, 249-263.	2.6	81
36	Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathologica, 2012, 123, 807-823.	7.7	46

#	Article	IF	Citations
37	Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage. American Journal of Human Genetics, 2012, 90, 1102-1107.	6.2	414
38	Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Molecular Neurodegeneration, 2011, 6, 73.	10.8	137
39	Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice. Journal of Neuroscience, 2010, 30, 10851-10859.	3.6	457
40	Sorting Out Frontotemporal Dementia?. Neuron, 2010, 68, 601-603.	8.1	6
41	Targeting $\hat{Al^2}$ and tau in Alzheimer's disease, an early interim report. Experimental Neurology, 2010, 223, 252-266.	4.1	80
42	Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging. American Journal of Pathology, 2010, 177, 311-324.	3.8	262
43	Aging Analysis Reveals Slowed Tau Turnover and Enhanced Stress Response in a Mouse Model of Tauopathy. American Journal of Pathology, 2009, 174, 228-238.	3.8	73
44	In vivo silencing of alpha-synuclein using naked siRNA. Molecular Neurodegeneration, 2008, 3, 19.	10.8	114
45	<i>In Vivo</i> Imaging Reveals Dissociation between Caspase Activation and Acute Neuronal Death in Tangle-Bearing Neurons. Journal of Neuroscience, 2008, 28, 862-867.	3.6	132
46	Accumulation of Pathological Tau Species and Memory Loss in a Conditional Model of Tauopathy. Journal of Neuroscience, 2007, 27, 3650-3662.	3.6	438
47	Induction of Tau Pathology by Intracerebral Infusion of Amyloid-β-Containing Brain Extract and by Amyloid-β Deposition in APP × Tau Transgenic Mice. American Journal of Pathology, 2007, 171, 2012-2020.	3.8	239
48	Age-Dependent Neurofibrillary Tangle Formation, Neuron Loss, and Memory Impairment in a Mouse Model of Human Tauopathy (P301L). Journal of Neuroscience, 2005, 25, 10637-10647.	3.6	584
49	Apoptosis in oligodendrocytes is associated with axonal degeneration in P301L tau mice. Neurobiology of Disease, 2004, 15, 553-562.	4.4	43
50	CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human Molecular Genetics, 2004, 13, 703-714.	2.9	613
51	Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. Journal of Neurocytology, 2003, 32, 1091-1105.	1.5	115
52	Filamentous Tau in Oligodendrocytes and Astrocytes of Transgenic Mice Expressing the Human Tau Isoform with the P301L Mutation. American Journal of Pathology, 2003, 162, 213-218.	3.8	95
53	Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. Journal of Neurochemistry, 2002, 83, 1498-1508.	3.9	122
54	Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics, 2000, 25, 402-405.	21.4	1,254