Antonio Marcilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183034/publications.pdf

Version: 2024-02-01

86 papers 17,659 citations

39 h-index 83 g-index

86 all docs 86 docs citations

86 times ranked 21104 citing authors

#	Article	IF	CITATIONS
1	Proteomic Analysis of Extracellular Vesicles From Fasciola hepatica Hatching Eggs and Juveniles in Culture. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	9
2	Trichuris trichiura egg extract proteome reveals potential diagnostic targets and immunomodulators. PLoS Neglected Tropical Diseases, 2021, 15, e0009221.	3.0	7
3	Overview of the interaction of helminth extracellular vesicles with the host and their potential functions and biological applications. Molecular Immunology, 2021, 134, 228-235.	2.2	19
4	Isolation and characterization of urine microvesicles from prostate cancer patients: different approaches, different visions. BMC Urology, 2021, 21, 137.	1.4	8
5	Pathogens and extracellular vesicles: New paths and challenges to understanding and treating diseases. Editorial opinion. Molecular Immunology, 2021, 139, 155-156.	2.2	5
6	Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small "Hit―in Cancer Diagnosis. Applied Sciences (Switzerland), 2021, 11, 10787.	2.5	6
7	The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities. International Journal for Parasitology, 2020, 50, 635-645.	3.1	73
8	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	12.2	77
9	Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence. Nature Communications, 2020, 11, 2761.	12.8	56
10	Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. International Journal for Parasitology, 2020, 50, 663-669.	3.1	20
11	Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Scientific Reports, 2020, 10, 3120.	3.3	24
12	Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis. PLoS Neglected Tropical Diseases, 2020, 14, e0008890.	3.0	16
13	Isolation and Analysis of Fasciola hepatica Extracellular Vesicles. Methods in Molecular Biology, 2020, 2137, 37-50.	0.9	2
14	Exploration of extracellular vesicles from <i>Ascaris suum</i> provides evidence of parasite–host cross talk. Journal of Extracellular Vesicles, 2019, 8, 1578116.	12.2	103
15	Morphological and molecular characterization of Paragonimus caliensis Little, 1968 (Trematoda:) Tj ETQq1 1 0.78	84314 rgBi	T <u> </u> Overlock]
16	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
17	Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode. Frontiers in Microbiology, 2018, 9, 1036.	3.5	48
18	Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. European Journal of Cell Biology, 2017, 96, 131-142.	3.6	72

#	Article	IF	Citations
19	Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. International Journal for Parasitology, 2017, 47, 675-686.	3.1	69
20	Reprint of "EXOSOME LEVELS IN HUMAN BODY FLUIDS: A TUMOR MARKER BY THEMSELVES?― European Journal of Pharmaceutical Sciences, 2017, 98, 64-69.	4.0	7
21	On the presence and immunoregulatory functions of extracellular micro <scp>RNA</scp> s in the trematode <i>Fasciola hepatica</i> . Parasite Immunology, 2017, 39, e12399.	1.5	59
22	Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences, 2017, 98, 40-50.	4.0	74
23	Exosome levels in human body fluids: A tumor marker by themselves?. European Journal of Pharmaceutical Sciences, 2017, 96, 93-98.	4.0	148
24	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	12.2	38
25	Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice. International Journal for Parasitology, 2016, 46, 799-808.	3.1	50
26	First ultrastructural data on the human tapeworm Taenia asiatica eggs by scanning and transmission electron microscopy (SEM, TEM). Parasitology Research, 2016, 115, 3649-3655.	1.6	7
27	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
28	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
29	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
30	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
31	The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles. International Journal for Parasitology, 2015, 45, 697-702.	3.1	64
32	Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development (Cambridge), 2015, 142, 3210-3221.	2.5	205
33	The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*. Molecular and Cellular Proteomics, 2015, 14, 3258-3273.	3.8	194
34	Prevalence and risk factors related to intestinal parasites among children in Department of Rio San Juan, Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 774-782.	1.8	21
35	The Role of Extracellular Vesicles in Modulating the Host Immune Response during Parasitic Infections. Frontiers in Immunology, 2014, 5, 433.	4.8	73
36	Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. Journal of Proteomics, 2014, 105, 232-241.	2.4	99

#	Article	IF	Citations
37	Extracellular vesicles in parasitic diseases. Journal of Extracellular Vesicles, 2014, 3, 25040.	12.2	205
38	Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. International Journal for Parasitology, 2013, 43, 453-463.	3.1	12
39	The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. Journal of Proteomics, 2013, 89, 202-214.	2.4	19
40	First Symposium of "Grupo Español de Investigación en VesÃculas Extracelulares (GEIVEX)â€; Segovia, 8–9ÂNovember 2012. Journal of Extracellular Vesicles, 2013, 2, 20256.	12.2	1
41	The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1513.	3.0	29
42	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
43	Analysis of the Tegument of <i>Zygocotyle lunata </i> (Trematoda: Paramphistomidae) Adults by Scanning Electron Microscopy. Journal of Parasitology, 2012, 98, 1287-1290.	0.7	1
44	Proteomic analysis of the pinworm Syphacia muris (Nematoda: Oxyuridae), a parasite of laboratory rats. Parasitology International, 2012, 61, 561-564.	1.3	9
45	Cellular immune responses in Echinostoma caproni experimentally infected mice. Parasitology Research, 2012, 110, 1033-1036.	1.6	1
46	Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells. PLoS ONE, 2012, 7, e45974.	2.5	300
47	Numerical analysis of whole-cell and cell wall proteins' profiles of human oral cavity Candida isolates. African Journal of Microbiology Research, 2012, 6, .	0.4	0
48	Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni. Parasitology, 2011, 138, 1607-1619.	1.5	12
49	Echinostoma caproni (Trematoda): Differential in vivo cytokine responses in high and low compatible hosts. Experimental Parasitology, 2011, 127, 387-397.	1.2	36
50	Zygocotyle lunata: Proteomic analysis of the adult stage. Experimental Parasitology, 2011, 128, 133-137.	1.2	4
51	Th17 responses in Echinostoma caproni infections in hosts of high and low compatibility. Experimental Parasitology, 2011, 129, 307-311.	1.2	28
52	Proteomics of foodborne trematodes. Journal of Proteomics, 2011, 74, 1485-1503.	2.4	37
53	Excretory/secretory proteome of the adult stage of Echinostoma caproni. Parasitology Research, 2010, 107, 691-697.	1.6	46
54	Echinostoma caproni: Differential tegumental responses to growth in compatible and less compatible hosts. Experimental Parasitology, 2010, 125, 304-309.	1.2	11

#	Article	IF	Citations
55	Proteomic analysis of <i>Strongyloides stercoralis</i> L3 larvae. Parasitology, 2010, 137, 1577-1583.	1.5	30
56	Echinostomes: genomics and proteomics. , 2009, , 207-228.		5
57	Identification of antigenic proteins from <i>Echinostoma caproni </i> (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 2008, 30, 271-279.	1.5	53
58	Leucine Aminopeptidase Is an Immunodominant Antigen of <i>Fasciola hepatica</i> Excretory and Secretory Products in Human Infections. Vaccine Journal, 2008, 15, 95-100.	3.1	55
59	Molecular cloning and characterization of <i>Echinostoma caproni </i> heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts. Parasitology, 2008, 135, 1469-1477.	1.5	19
60	DEVELOPMENT AND PATHOLOGY OF ECHINOSTOMA CAPRONI IN EXPERIMENTALLY INFECTED MICE. Journal of Parasitology, 2007, 93, 854-859.	0.7	45
61	Echinostoma caproni: Kinetics of IgM, IgA and IgG subclasses in the serum and intestine of experimentally infected rats and mice. Experimental Parasitology, 2007, 116, 390-398.	1.2	31
62	Echinostoma caproni: Identification of enolase in excretory/secretory products, molecular cloning, and functional expression. Experimental Parasitology, 2007, 117, 57-64.	1.2	41
63	High risk of bacterobilia in advanced experimental chronic fasciolosis. Acta Tropica, 2006, 100, 17-23.	2.0	77
64	Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections. Proteomics, 2006, 6, 2835-2843.	2.2	46
65	Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infection, Genetics and Evolution, 2006, 6, 46-62.	2.3	116
66	Echinostoma caproni: Intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Experimental Parasitology, 2006, 112, 164-171.	1.2	42
67	Kinetics of Antibodies and Antigens in Serum of Mice Experimentally Infected with Echinostoma caproni (Trematoda: Echinostomatidae). Journal of Parasitology, 2005, 91, 978-980.	0.7	25
68	Specific tyrosine phosphorylation in response to bile in Fasciola hepatica and Echinostoma friedi. Experimental Parasitology, 2004, 106, 56-58.	1.2	7
69	KINETICS OF ECHINOSTOMA CAPRONI (TREMATODA: ECHINOSTOMATIDAE) ANTIGENS IN FECES AND SERUM OF EXPERIMENTALLY INFECTED HAMSTERS AND RATS. Journal of Parasitology, 2004, 90, 752-758.	0.7	27
70	Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters, 2004, 563, 203-206.	2.8	128
71	DEVELOPMENT OF AN ANTIBODY-BASED CAPTURE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETECTING ECHINOSTOMA CAPRONI (TREMATODA) IN EXPERIMENTALLY INFECTED RATS: KINETICS OF COPROANTIGEN EXCRETION. Journal of Parasitology, 2003, 89, 1227-1231.	0.7	26
72	A PCR-RFLP assay for the distinction between Fasciola hepatica and Fasciola gigantica. Molecular and Cellular Probes, 2002, 16, 327-333.	2.1	133

#	Article	IF	CITATIONS
73	Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae:) Tj ETQq $1\ 1\ 0.7$	7843]4 rg	BT /Overlock
74	Triatomine vectors of Trypanosoma cruzi: a molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, S159-S164.	1.8	37
75	The ITS-2 of the Nuclear rDNA as a Molecular Marker for Populations, Species, and Phylogenetic Relationships in Triatominae (Hemiptera: Reduviidae), Vectors of Chagas Disease. Molecular Phylogenetics and Evolution, 2001, 18, 136-142.	2.7	160
76	Monoclonal antibody 3H8: a useful tool in the diagnosis of candidiasis. Microbiology (United) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 622
77	Cloning and characterization of the phenylalanyl-tRNA synthetase β subunit gene fromCandida albicans. FEMS Microbiology Letters, 1998, 161, 179-185.	1.8	1
78	A Candida albicans 37 kDa polypeptide with homology to the laminin receptor is a component of the translational machinery. Microbiology (United Kingdom), 1998, 144, 839-847.	1.8	12
79	Specific Immunohistochemical Identification of <i>Candida albicans </i> i>in Paraffin-embedded Tissue With a New Monoclonal Antibody (1B12). American Journal of Clinical Pathology, 1995, 103, 130-135.	0.7	21
80	Identification of the Major Tyrosine Kinase Substrate in Signaling Complexes Formed after Engagement of Fcî ³ Receptors. Journal of Biological Chemistry, 1995, 270, 9115-9120.	3.4	110
81	Incorporation of specific wall proteins during yeast and mycelial protoplast regeneration in Candida albicans. Archives of Microbiology, 1994, 161, 145-151.	2.2	21
82	Preparation of Anti-protein and Anti-mannan Antisera against Fungal Cell Wall by Affinity Chromatography. Experimental Mycology, 1994, 18, 159-167.	1.6	2
83	Incorporation of specific wall proteins during yeast and mycelial protoplast regeneration in. Archives of Microbiology, 1994, 161, 145.	2.2	12
84	Critical steps in fungal cell wall synthesis: Strategies for their inhibition. , 1993, 60, 337-345.		34
85	Wall formation by Candida albicans yeast cells: synthesis, secretion and incorporation of two types of mannoproteins. Journal of General Microbiology, 1993, 139, 2985-2993.	2.3	34
86	Candida albicans mycelial wall structure: supramolecular complexes released by Zymolyase, chitinase and ?-mercaptoethanol. Archives of Microbiology, 1991, 155, 312-9.	2.2	60