List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7182689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant neighbours can make or break the disease transmission chain of a fungal root pathogen. New Phytologist, 2022, 233, 1303-1316.	7.3	11
2	Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant and Soil, 2021, 461, 91-105.	3.7	50
3	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
4	Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology, 2021, 102, e03332.	3.2	74
5	Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytologist, 2021, 231, 1171-1182.	7.3	17
6	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	7.8	62
7	Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships. Trends in Ecology and Evolution, 2021, 36, 651-661.	8.7	74
8	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	7.3	153
9	Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology, 2020, 101, e02905.	3.2	40
10	The role of fineâ€root mass, specific root length and life span in tree performance: A wholeâ€tree exploration. Functional Ecology, 2020, 34, 575-585.	3.6	61
11	Insect pollination is the weakest link in the production of a hybrid seed crop. Agriculture, Ecosystems and Environment, 2020, 290, 106743.	5.3	20
12	Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecology, 2020, 48, 100987.	1.6	24
13	Do soilâ€borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. Journal of Ecology, 2020, 108, 1810-1821.	4.0	49
14	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	10.3	377
15	Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna. Journal of Ecology, 2020, 108, 2283-2297.	4.0	59
16	Using root traits to understand temporal changes in biodiversity effects in grassland mixtures. Oikos, 2019, 128, 208-220.	2.7	16
17	Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. European Journal of Plant Pathology, 2019, 154, 141-156.	1.7	42
18	Above- and belowground overyielding are related at the community and species level in a grassland biodiversity experiment. Advances in Ecological Research, 2019, 61, 55-89.	2.7	12

JASPER VAN RUIJVEN

#	Article	IF	CITATIONS
19	The Future of Complementarity: Disentangling Causes from Consequences. Trends in Ecology and Evolution, 2019, 34, 167-180.	8.7	246
20	Lost in diversity: the interactions between soilâ€borne fungi, biodiversity and plant productivity. New Phytologist, 2018, 218, 542-553.	7.3	160
21	Belowâ€ground complementarity effects in a grassland biodiversity experiment are related to deepâ€rooting species. Journal of Ecology, 2018, 106, 265-277.	4.0	76
22	The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2018, 422, 479-493.	3.7	38
23	Focus on a locus. Nature Ecology and Evolution, 2018, 2, 1838-1839.	7.8	1
24	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	7.8	296
25	Microbial catabolic diversity in and beyond the rhizosphere of plant species and plant genotypes. Pedobiologia, 2017, 61, 43-49.	1.2	16
26	Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications, 2017, 8, 1161.	12.8	73
27	Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology and Evolution, 2017, 1, 1639-1642.	7.8	95
28	Short-term root and leaf decomposition of two dominant plant species in a Siberian tundra. Pedobiologia, 2017, 65, 68-76.	1.2	10
29	Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia, 2017, 185, 499-511.	2.0	13
30	Quantifying establishment limitations during the ecological restoration of speciesâ€rich <i>Nardus</i> grassland. Applied Vegetation Science, 2017, 20, 594-607.	1.9	8
31	An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments. Journal of Ecology, 2017, 105, 345-353.	4.0	8
32	Plant species richness negatively affects root decomposition in grasslands. Journal of Ecology, 2017, 105, 209-218.	4.0	41
33	Above―and belowâ€ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Journal of Ecology, 2017, 105, 947-957.	4.0	49
34	Towards a multidimensional root trait framework: a tree root review. New Phytologist, 2016, 211, 1159-1169.	7.3	432
35	Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environmental Research Letters, 2016, 11, 055003.	5.2	45
36	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	4.0	169

#	Article	IF	CITATIONS
37	Can root trait diversity explain complementarity effects in a grassland biodiversity experiment?. Journal of Plant Ecology, 2016, , rtw111.	2.3	9
38	Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant and Soil, 2016, 407, 55-65.	3.7	49
39	Root–Root Interactions: Towards A Rhizosphere Framework. Trends in Plant Science, 2016, 21, 209-217.	8.8	149
40	Linking root traits and competitive success in grassland species. Plant and Soil, 2016, 407, 39-53.	3.7	87
41	Effects of grass field margin management on food availability for Black-tailed Godwit chicks. Journal for Nature Conservation, 2016, 29, 45-50.	1.8	7
42	Environmental changes drive the temporal stability of semiâ€arid natural grasslands through altering species asynchrony. Journal of Ecology, 2015, 103, 1308-1316.	4.0	143
43	Diversity effects on root length production and loss in an experimental grassland community. Functional Ecology, 2015, 29, 1560-1568.	3.6	31
44	Further reâ€analyses looking for effects of phylogenetic diversity on community biomass and stability. Functional Ecology, 2015, 29, 1607-1610.	3.6	13
45	Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil. Soil Biology and Biochemistry, 2015, 80, 341-348.	8.8	42
46	Food Availability for Meadow Bird Families in Grass Field Margins. Ardea, 2015, 103, 17-26.	0.6	5
47	Loss of Plant Species Diversity Reduces Soil Erosion Resistance. Ecosystems, 2015, 18, 881-888.	3.4	222
48	Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a reâ€examination of 16 grassland biodiversity studies. Functional Ecology, 2015, 29, 615-626.	3.6	124
49	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	27.8	1,032
50	Do Field Margins Enrich the Diet of the Eurasian Skylark <i>Alauda arvensis</i> on Intensive Farmland?. Ardea, 2014, 102, 161-174.	0.6	9
51	Artificial light at night causes diapause inhibition and sexâ€specific life history changes in a moth. Ecology and Evolution, 2014, 4, 2082-2089.	1.9	151
52	Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509, 218-221.	27.8	600
53	The effectiveness of ditch banks as dispersal corridor for plants in agricultural landscapes depends on species' dispersal traits. Biological Conservation, 2014, 171, 91-98.	4.1	24
54	Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 2014, 102, 1163-1170.	4.0	220

#	Article	IF	CITATIONS
55	Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments. American Naturalist, 2014, 183, 1-12.	2.1	309
56	Field margins as foraging habitat for skylarks (Alauda arvensis) in the breeding season. Agriculture, Ecosystems and Environment, 2013, 170, 10-15.	5.3	25
57	Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology, 2013, 94, 1697-1707.	3.2	146
58	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	6.4	251
59	Assess ecosystem resilience: Linking response and effect traits to environmental variability. Ecological Indicators, 2013, 30, 21-27.	6.3	47
60	Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia, 2013, 173, 269-280.	2.0	90
61	Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. Journal of Ecology, 2012, 100, 6-15.	4.0	182
62	Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory?. Functional Ecology, 2012, 26, 66-73.	3.6	124
63	Longâ€ŧerm changes in plant diversity of grasslands under agricultural and conservation management. Applied Vegetation Science, 2012, 15, 299-306.	1.9	12
64	Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters, 2012, 15, 1033-1041.	6.4	356
65	High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477, 199-202.	27.8	1,195
66	Recovery of plant species richness during long-term fertilization of a species-rich grassland. Ecology, 2011, 92, 1393-1398.	3.2	53
67	Macroâ€detritivore identity drives leaf litter diversity effects. Oikos, 2011, 120, 1092-1098.	2.7	77
68	Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil, 2011, 344, 347-360.	3.7	107
69	The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 2011, 345, 315-324.	3.7	75
70	The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site. Ecosystems, 2011, 14, 1055-1065.	3.4	116
71	BUGS in the Analysis of Biodiversity Experiments: Species Richness and Composition Are of Similar Importance for Grassland Productivity. PLoS ONE, 2011, 6, e17434.	2.5	62
72	Plant species richness regulates soil respiration through changes in productivity. Oecologia, 2010, 163, 805-813.	2.0	67

#	ARTICLE	IF	CITATIONS
73	Travelling to a former sea floor: colonization of forests by understorey plant species on land recently reclaimed from the sea. Journal of Vegetation Science, 2010, 21, 167-176.	2.2	2
74	Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology, 2010, 98, 81-86.	4.0	227
75	Unveiling belowâ€ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. Journal of Ecology, 2010, 98, 1117-1127.	4.0	219
76	Foliar fungal pathogens and grassland biodiversity. Ecology, 2010, 91, 2572-2582.	3.2	105
77	Sphagnum re-introduction in degraded peatlands: The effects of aggregation, species identity and water table. Basic and Applied Ecology, 2009, 10, 697-706.	2.7	30
78	Longâ€ŧerm persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos, 2009, 118, 101-106.	2.7	82
79	Sod cutting and soil biota effects on seedling performance. Acta Oecologica, 2009, 35, 651-656.	1.1	8
80	Above―and belowground insect herbivores differentially affect soil nematode communities in species―ich plant communities. Oikos, 2007, 116, 923-930.	2.7	37
81	Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 2007, 116, 1323-1330.	2.7	77
82	Precipitation determines the persistence of hollow Sphagnum species on hummocks. Wetlands, 2007, 27, 979-986.	1.5	17
83	Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 2007, 116, 1323-1330.	2.7	1
84	Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 695-700.	7.1	335
85	Interactions between spatially separated herbivores indirectly alter plant diversity. Ecology Letters, 2004, 8, 30-37.	6.4	46
86	Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 2004, 106, 576-586.	2.7	356
87	Positive effects of plant species diversity on productivity in the absence of legumes. Ecology Letters, 2003, 6, 170-175.	6.4	168
88	Diversity reduces invasibility in experimental plant communities: the role of plant species. Ecology Letters, 2003, 6, 910-918.	6.4	180
89	Focusing on individual plants to understand community scale biodiversity effects: the case of root distribution in grasslands. Oikos, 0, , .	2.7	6