Louis Fensterbank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181992/publications.pdf

Version: 2024-02-01

128 papers

8,872 citations

53 h-index 91 g-index

144 all docs 144 docs citations

times ranked

144

5435 citing authors

#	Article	IF	CITATIONS
1	Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon Derivatives. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
2	Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon Derivatives. Angewandte Chemie, 2022, 134 , .	2.0	4
3	Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chemical Society Reviews, 2022, 51, 1470-1510.	38.1	44
4	Organometallic catalysis under visible light activation: benefits and preliminary rationales. Photochemical and Photobiological Sciences, 2022, , 1.	2,9	7
5	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487.	4.6	11
6	Synthesis and Reactivity of Martin's Spirosilane-Derived Chloromethylsilicate. Molecules, 2022, 27, 1767.	3.8	3
7	Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp2-Csp cross-coupling. Nature Communications, 2022, 13, 2295.	12.8	12
8	Amination of Cyclohexane by Dielectric Barrier Discharge Processing in a Continuous Flow Microreactor: Experimental and Simulation Studies. Plasma Chemistry and Plasma Processing, 2021, 41, 351-368.	2.4	6
9	A Parisian Vision of the Chemistry of Hypercoordinated Silicon Derivatives. Chemical Record, 2021, 21, 1119-1129.	5.8	21
10	Phenyl Silicates with Substituted Catecholate Ligands: Synthesis, Structural Studies and Reactivity. Chemistry - A European Journal, 2021, 27, 8782-8790.	3.3	11
11	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 20032-20041.	2.0	O
12	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 19879-19888.	13.8	11
13	Helical Bisphosphinites in Asymmetric Tsujiâ€Trost Allylation: a Remarkable P:Pd Ratio Effect. ChemCatChem, 2021, 13, 4543-4548.	3.7	6
14	Introduction: Radicals, from Gomberg to Planet Mars. , 2021, , .		1
15	Visible-Light-Mediated Z-Stereoselective Monoalkylation of \hat{l}^2 , \hat{l}^2 -Dichlorostyrenes by Photoredox/Nickel Dual Catalysis. Synlett, 2021, 32, 1513-1518.	1.8	4
16	Transition-Metal-Free Silylation of Unactivated C(sp ²)â€"H Bonds with <i>tert</i> Butyl-Substituted Silyldiazenes. ACS Catalysis, 2021, 11, 13085-13090.	11.2	20
17	Synthesis and reactivity of an anionic NHC-borane featuring a weakly coordinating silicate anion. Journal of Organometallic Chemistry, 2021, 956, 122120.	1.8	3
18	Straightforward Access to 2-lodoindolizines via Iodine-Mediated Cyclization of 2-Pyridylallenes. Organic Process Research and Development, 2020, 24, 817-821.	2.7	7

#	Article	IF	CITATIONS
19	Towards Visibleâ€Light Photocatalytic Reduction of Hypercoordinated Silicon Species. Helvetica Chimica Acta, 2020, 103, e1900238.	1.6	2
20	Iron and cobalt catalysis: new perspectives in synthetic radical chemistry. Chemical Society Reviews, 2020, 49, 8501-8542.	38.1	91
21	Permethylated NHCâ€Capped α―and βâ€Cyclodextrins (ICyD ^{Me}) Regioselective and Enantioselective Goldâ€Catalysis in Pure Water. Chemistry - A European Journal, 2020, 26, 15901-15909.	3.3	32
22	Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. IScience, 2020, 23, 100955.	4.1	14
23	Synthesis of Aliphatic Amides through a Photoredox Catalyzed Radical Carbonylation Involving Organosilicates as Alkyl Radical Precursors. Advanced Synthesis and Catalysis, 2020, 362, 2254-2259.	4.3	31
24	î²-Cyclodextrin–NHC–Gold(I) Complex (β-ICyD)AuCl: A Chiral Nanoreactor for Enantioselective and Substrate-Selective Alkoxycyclization Reactions. ACS Catalysis, 2020, 10, 5964-5972.	11,2	39
25	Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry, $2019,11,797-805.$	13.6	84
26	Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones. Science China Chemistry, 2019, 62, 1542-1546.	8.2	13
27	Direct Synthesis of Nâ€Heterocyclic Carbeneâ€Stabilized Copper Nanoparticles from an Nâ€Heterocyclic Carbene–Borane. Chemistry - A European Journal, 2019, 25, 11481-11485.	3.3	20
28	Interaction between Spirosilanes and Lewis Bases: from Coordination to Frustration. Chemistry - A European Journal, 2019, 25, 9438-9442.	3.3	10
29	15 Silicates in Photocatalysis. , 2019, , .		0
30	Cross coupling of alkylsilicates with acyl chlorides <i>via</i> photoredox/nickel dual catalysis: a new synthesis method for ketones. Organic Chemistry Frontiers, 2019, 6, 1378-1382.	4.5	37
31	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visible‣ight Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1789-1793.	13.8	68
32	A HELIXOLâ€Derived Bisphosphinite Ligand: Synthesis and Application in Goldâ€Catalyzed Enynes Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.	2.4	9
33	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1803-1807.	2.0	22
34	N-Heterocyclic carbene-stabilized gold nanoparticles with tunable sizes. Dalton Transactions, 2018, 47, 6850-6859.	3.3	43
35	Synthesis of Stable Pentacoordinate Silicon(IV)–NHC Adducts: An Entry to Anionic N-Heterocyclic Carbene Ligands. Organometallics, 2018, 37, 517-520.	2.3	22
36	Copperâ€Catalyzed Aziridination with Redoxâ€Active Ligands: Molecular Spin Catalysis. Chemistry - A European Journal, 2018, 24, 5086-5090.	3.3	28

#	Article	IF	CITATIONS
37	Elucidating Dramatic Ligand Effects on SET Processes: Iron Hydride versus Iron Borohydride Catalyzed Reductive Radical Cyclization of Unsaturated Organic Halides. Organometallics, 2018, 37, 761-771.	2.3	17
38	Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes. Reaction Chemistry and Engineering, 2018, 3, 930-941.	3.7	30
39	Goldâ€Catalyzed Migration of Propargyl Acetate as an Entry into the Total Synthesis of Natural Products. Israel Journal of Chemistry, 2018, 58, 586-595.	2.3	14
40	The Invention of New Methodologies: An Opportunity for Dating Natural Products. Synlett, 2018, 29, 2108-2116.	1.8	3
41	Photoredox/Nickel Dual Catalysis for the C(sp ³)–C(sp ³) Crossâ€Coupling of Alkylsilicates with Alkyl Halides. European Journal of Organic Chemistry, 2017, 2017, 2118-2121.	2.4	37
42	Gold(<scp>i</scp>)-catalyzed access to neomerane skeletons. Organic Chemistry Frontiers, 2017, 4, 1906-1916.	4.5	5
43	Photochemical studies on bis-sulfide and -sulfone tethered polyenic derivatives. Organic and Biomolecular Chemistry, 2017, 15, 4180-4190.	2.8	2
44	Niobium-Catalyzed Intramolecular Addition of Oâ \in "H and Nâ \in "H Bonds to Alkenes: A Tool for Hydrofunctionalization. Organic Letters, 2017, 19, 2062-2065.	4.6	34
45	Circumventing Intrinsic Metal Reactivity: Radical Generation with Redoxâ€Active Ligands. Chemistry - A European Journal, 2017, 23, 15030-15034.	3.3	33
46	Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic Center. CheM, 2017, 3, 174-191.	11.7	62
47	Iron and Single Electron Transfer: All is in the Ligand. Israel Journal of Chemistry, 2017, 57, 1160-1169.	2.3	2
48	Dual Photoredox/Gold Catalysis Arylative Cyclization of <i>o</i> -Alkynylphenols with Aryldiazonium Salts: A Flexible Synthesis of Benzofurans. Journal of Organic Chemistry, 2016, 81, 7182-7190.	3. 2	79
49	Assessing Ligand and Counterion Effects in the Noble Metal Catalyzed Cycloisomerization Reactions of 1,6-Allenynes: a Combined Experimental and Theoretical Approach. ACS Catalysis, 2016, 6, 5146-5160.	11.2	50
50	Chiral Phosphate in Rhodiumâ€Catalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.	3.3	10
51	Bis-phosphine allene ligand: coordination chemistry and preliminary applications in catalysis. Chemical Communications, 2016, 52, 6785-6788.	4.1	18
52	Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent Ligands. Angewandte Chemie, 2016, 128, 10870-10874.	2.0	8
53	Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent Ligands. Angewandte Chemie - International Edition, 2016, 55, 10712-10716.	13.8	31
54	Metalâ€Promoted Coupling Reactions Implying Ligandâ€Based Redox Changes. ChemCatChem, 2016, 8, 3310-3316.	3.7	49

#	Article	IF	CITATIONS
55	Photoredox Catalysis for the Generation of Carbon Centered Radicals. Accounts of Chemical Research, 2016, 49, 1924-1936.	15.6	226
56	Iron(II) catalyzed reductive radical cyclization reactions of bromoacetals in the presence of NaBH4: optimization studies and mechanistic insights. Tetrahedron, 2016, 72, 7727-7737.	1.9	13
57	Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis. Chemical Communications, 2016, 52, 9877-9880.	4.1	81
58	Redox-ligand sustains controlled generation of CF ₃ radicals by well-defined copper complex. Chemical Science, 2016, 7, 2030-2036.	7.4	96
59	Single-Electron-Transfer Oxidation of Trifluoroborates and Silicates with Organic Reagents: A Comparative Study. Synlett, 2016, 27, 731-735.	1.8	27
60	Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl cross coupling reactions. Organic Chemistry Frontiers, 2016, 3, 462-465.	4.5	80
61	Synthesis of Allenes Bearing Phosphine Oxide Groups and Investigation of Their Reactivity toward Gold Complexes. Advanced Synthesis and Catalysis, 2015, 357, 2213-2218.	4.3	23
62	Silicates as Latent Alkyl Radical Precursors: Visibleâ€Light Photocatalytic Oxidation of Hypervalent Bisâ€Catecholato Silicon Compounds. Angewandte Chemie - International Edition, 2015, 54, 11414-11418.	13.8	247
63	Versatile Access to Martin's Spirosilanes and Their Hypervalent Derivatives. Journal of Organic Chemistry, 2015, 80, 3280-3288.	3.2	16
64	Tandem CH Activation/Arylation Catalyzed by Lowâ€Valent Iron Complexes with Bisiminopyridine Ligands. Chemistry - A European Journal, 2014, 20, 4754-4761.	3.3	27
65	Iminosemiquinone radical ligands enable access to a well-defined redox-active Cu ^{ll} –CF ₃ complex. Chemical Communications, 2014, 50, 10394-10397.	4.1	43
66	GOLD-CATALYZED REACTIONS OF PROPARGYLIC ESTERS. Catalytic Science Series, 2014, , 331-391.	0.0	2
67	Molecular Complexity from Polyunsaturated Substrates: The Gold Catalysis Approach. Accounts of Chemical Research, 2014, 47, 953-965.	15.6	371
68	Secondary Phosphine Oxide–Gold(I) Complexes and Their First Application in Catalysis. Organometallics, 2014, 33, 4051-4056.	2.3	47
69	8.27 Reduction of Saturated Alcohols and Amines to Alkanes. , 2014, , 1011-1030.		10
70	Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence for a Cu ^{II} /Cu ^I Mechanism. Chemistry - A European Journal, 2013, 19, 10809-10813.	3.3	142
71	When NHC Ligands Make a Difference in Gold Catalysis. Israel Journal of Chemistry, 2013, 53, 892-900.	2.3	58
72	Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne. Organometallics, 2013, 32, 1665-1673.	2.3	17

#	Article	IF	CITATIONS
73	Ring Expansions Within the Goldâ€Catalyzed Cycloisomerization of <i>O</i> â€Tethered 1,6â€Enynes. Application to the Synthesis of Naturalâ€Productâ€like Macrocycles. ChemCatChem, 2013, 5, 1096-1099.	3.7	26
74	Visible‣ight Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Advanced Synthesis and Catalysis, 2013, 355, 1477-1482.	4.3	104
75	NHCâ€Capped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Dependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.	13.8	128
76	Spirosilane Derivatives as Fluoride Sensors. Organic Letters, 2013, 15, 748-751.	4.6	43
77	Homolytic Reduction of Onium Salts. Chimia, 2012, 66, 425-432.	0.6	25
78	Ironâ€Catalyzed Reductive Radical Cyclization of Organic Halides in the Presence of NaBH ₄ : Evidence of an Active Hydridoâ€Iron(I) Catalyst. Angewandte Chemie - International Edition, 2012, 51, 6942-6946.	13.8	61
79	Chiral Acyclic Diaminocarbene Complexes: a New Opportunity for Gold Asymmetric Catalysis. ChemCatChem, 2012, 4, 1065-1066.	3.7	25
80	Rhâ€Catalyzed [5+1] and [4+1] Cycloaddition Reactions of 1,4â€Enyne Esters with CO: A Shortcut to Functionalized Resorcinols and Cyclopentenones. Chemistry - A European Journal, 2012, 18, 7243-7247.	3.3	65
81	Nonâ€Innocent Ligands: New Opportunities in Iron Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 376-389.	2.0	157
82	Transition Metal Catalyzed Cycloisomerizations of 1, <i>n</i> -Allenynes and -Allenenes. Chemical Reviews, 2011, 111, 1954-1993.	47.7	584
83	Activation of Allenes by Gold Complexes: A Theoretical Standpoint. Topics in Current Chemistry, 2011, 302, 157-182.	4.0	31
84	Silver-Catalyzed Cycloisomerization of 1,n-Allenynamides. Organic Letters, 2011, 13, 2952-2955.	4.6	51
85	(Pentamethylcyclopentadienyl)Iridium Dichloride Dimer {[IrCp*Cl ₂] ₂ }: A Novel Efficient Catalyst for the Cycloisomerizations of Homopropargylic Diols and Nâ€√ethered Enynes. Advanced Synthesis and Catalysis, 2011, 353, 1908-1912.	4.3	37
86	Titelbild: Komplexe von N-heterocyclischen Carbenen mit Boranen: Synthese und Reaktionen (Angew.) Tj ETQqC	0 0 rgBT /	Overlock 10 1
87	Synthesis and Reactions of Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International Edition, 2011, 50, 10294-10317.	13.8	398
88	Enantioselective Ir ^I â€Catalyzed Carbocyclization of 1,6â€Enynes by the Chiral Counterion Strategy. Chemistry - A European Journal, 2011, 17, 13789-13794.	3.3	77
89	New elements in the gold(I)-catalyzed cycloisomerization of enynyl ester derivatives embedding a cyclohexane template. Journal of Organometallic Chemistry, 2011, 696, 388-399.	1.8	27
90	Tracking gold acetylides in gold(i)-catalyzed cycloisomerization reactions of enynes. Chemical Science, 2011, 2, 2417.	7.4	97

#	Article	lF	Citations
91	Radical Deoxygenation of Xanthates and Related Functional Groups with New Minimalist N-Heterocyclic Carbene Boranes. Organic Letters, 2010, 12, 3002-3005.	4.6	113
92	Estimated Rate Constants for Hydrogen Abstraction from N-Heterocyclic Carbeneâ^'Borane Complexes by an Alkyl Radical. Organic Letters, 2010, 12, 2998-3001.	4.6	72
93	Innentitelbild: Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion (Angew. Chem. 48/2010). Angewandte Chemie, 2010, 122, 9198-9198.	2.0	1
94	Oxidation of Alkyl Trifluoroborates: An Opportunity for Tinâ€Free Radical Chemistry. Angewandte Chemie - International Edition, 2010, 49, 8721-8723.	13.8	135
95	Inside Cover: Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion (Angew. Chem. Int. Ed. 48/2010). Angewandte Chemie - International Edition, 2010, 49, 9014-9014.	13.8	1
96	Radical Migration of Substituents of Aryl Groups on Quinazolinones Derived from <i>N</i> -Acyl Cyanamides. Journal of the American Chemical Society, 2010, 132, 4381-4387.	13.7	81
97	Metalated-Arene-Phosphino Ligands: A Novel Approach to Open-Sided Gold Compounds. Organometallics, 2010, 29, 6636-6638.	2.3	12
98	Gold(I)-Catalyzed Cyclization of \hat{I}^2 -Allenylhydrazones: An Efficient Synthesis of Multisubstituted < i>N-Aminopyrroles. Organic Letters, 2010, 12, 4396-4399.	4.6	74
99	EPR Studies of the Generation, Structure, and Reactivity of N-Heterocyclic Carbene Borane Radicals. Journal of the American Chemical Society, 2010, 132, 2350-2358.	13.7	205
100	N-Heterocyclic Carbenesâ^Borane Complexes: A New Class of Initiators for Radical Photopolymerization. Macromolecules, 2010, 43, 2261-2267.	4.8	123
101	Gold(i)-catalysed cycloisomerisation of $1,6$ -enynes into functionalised allenes. Chemical Communications, $2010,46,865.$	4.1	66
102	Gold―and Platinum atalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.	3.3	129
103	Intramolecular Homolytic Substitution of Sulfinates and Sulfinamides. Chemistry - A European Journal, 2009, 15, 10225-10232.	3.3	58
104	Ionic and Organometallic Reductions with Nâ€Heterocyclic Carbene Boranes. Chemistry - A European Journal, 2009, 15, 12937-12940.	3.3	83
105	Towards the Synthesis of 3â€Silapiperidines. European Journal of Organic Chemistry, 2009, 2009, 1674-1678.	2.4	13
106	The Role of Water in Platinum atalyzed Cycloisomerization of 1,6â€Enynes: A Combined Experimental and Theoretical Gas Phase Study. ChemCatChem, 2009, 1, 138-143.	3.7	33
107	Suzukiâ^'Miyaura Coupling of NHCâ^'Boranes: A New Addition to the Câ^'C Coupling Toolbox. Organic Letters, 2009, 11, 4914-4917.	4.6	74
108	Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic Compounds. Journal of the American Chemical Society, 2009, 131, 2993-3006.	13.7	226

#	Article	IF	CITATIONS
109	<i>N</i> -Heterocyclic Carbene Boryl Radicals: A New Class of Boron-Centered Radical. Journal of the American Chemical Society, 2009, 131, 11256-11262.	13.7	254
110	Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle. Angewandte Chemie - International Edition, 2008, 47, 718-721.	13.8	265
111	The Role of Bent Acyclic Allene Gold Complexes in Axisâ€toâ€Center Chirality Transfers. Angewandte Chemie - International Edition, 2008, 47, 7534-7538.	13.8	125
112	Gold―vs. Platinumâ€Catalyzed Polycyclizations by <i>O</i> â€Acyl Migration. Solventâ€Free Reactions. Advanced Synthesis and Catalysis, 2008, 350, 43-48.	4.3	98
113	Complexes of Borane and N-Heterocyclic Carbenes: A New Class of Radical Hydrogen Atom Donor. Journal of the American Chemical Society, 2008, 130, 10082-10083.	13.7	253
114	Tandem Gold(I)-Catalyzed Cyclization/Electrophilic Cyclopropanation of Vinyl Allenes. Organic Letters, 2007, 9, 2207-2209.	4.6	175
115	From PtCl2- and Acid-Catalyzed to Uncatalyzed Cycloisomerization of 2-Propargyl Anilines: Access to Functionalized Indoles. Angewandte Chemie - International Edition, 2007, 46, 1881-1884.	13.8	124
116	Titanocene-Mediated Homolytic Opening of Epoxysilanes. Helvetica Chimica Acta, 2006, 89, 2297-2305.	1.6	12
117	Tandem PtCl2 catalyzed–thermal [3,3] rearrangements of enyne acetates. Tetrahedron, 2004, 60, 9745-9755.	1.9	67
118	PtCl2-Catalyzed Transannular Cycloisomerization of 1,5-Enynes:  A New Efficient Regio- and Stereocontrolled Access to Tricyclic Derivatives. Organic Letters, 2004, 6, 3771-3774.	4.6	82
119	PtCl2-Catalyzed Cycloisomerizations of Allenynes. Journal of the American Chemical Society, 2004, 126, 3408-3409.	13.7	108
120	PtCl2-Catalyzed Cycloisomerizations of 5-En-1-yn-3-ol Systems. Journal of the American Chemical Society, 2004, 126, 8656-8657.	13.7	234
121	Efficient, and Selective Synthesis of Carbocycles Acknowledgement is made to the EU for the COST D12 Action "Cascade Free Radical Reactions―and for a short-term scientific mission to Madrid (EM). We thank Nieves Arroyo (CSIC) for preliminary experiments, Dr. J. Vaissermann (UPMC) for the X-ray analysis of 3 e, Dr. M. L. limeno (CNOO) for NMR studies on 3 a, Dr. MN. Rager (ENSCP) for NMR studies	13.8	206
122	on 3aE%.h, 6, and. Angewandte Chemie - International Edition, 2002, 41, 2132. Tin-free radical chemistry: intramolecular addition of alkyl radicals to aldehydes and ketones. Tetrahedron Letters, 1999, 40, 5511-5514.	1.4	74
123	5-Endo-TrigRadical Cyclizations of Bromomethyldimethylsilyl Diisopropylpropargylic Ethers. A Highly Diastereoselective Access to Functionalized Cyclopentanes. Journal of Organic Chemistry, 1999, 64, 4920-4925.	3.2	62
124	Intramolecular addition of vinyl radicals to aldehydes. Tetrahedron Letters, 1998, 39, 833-836.	1.4	25
125	From Acyclic Precursors to Linear Triquinanes through a Diastereoselective One-Pot Process. A New Illustration of the Synthetic Power of Radical Cascades. Journal of Organic Chemistry, 1998, 63, 6764-6765.	3.2	63
126	Silanol reactivity: evaluation of silanolate as a metalation-directing group. Journal of Organic Chemistry, 1993, 58, 6314-6318.	3.2	38

#	#	Article	IF	CITATIONS
]	127	An intramolecular Diels-Alder reaction of vinylsilanes. Journal of Organic Chemistry, 1992, 57, 5279-5281.	3.2	66
1	128	Bis(catecholato)silicates: Synthesis and Structural Data. European Journal of Inorganic Chemistry, 0, ,	2.0	2