## Louis Fensterbank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181992/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                               | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | Transition Metal Catalyzed Cycloisomerizations of 1, <i>n</i> -Allenynes and -Allenenes. Chemical Reviews, 2011, 111, 1954-1993.                                                                                                                                                                                                                                                                                      | 47.7      | 584       |
| 2  | Synthesis and Reactions of Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International<br>Edition, 2011, 50, 10294-10317.                                                                                                                                                                                                                                                                                      | 13.8      | 398       |
| 3  | Molecular Complexity from Polyunsaturated Substrates: The Gold Catalysis Approach. Accounts of Chemical Research, 2014, 47, 953-965.                                                                                                                                                                                                                                                                                  | 15.6      | 371       |
| 4  | Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle. Angewandte Chemie -<br>International Edition, 2008, 47, 718-721.                                                                                                                                                                                                                                                                             | 13.8      | 265       |
| 5  | <i>N</i> -Heterocyclic Carbene Boryl Radicals: A New Class of Boron-Centered Radical. Journal of the<br>American Chemical Society, 2009, 131, 11256-11262.                                                                                                                                                                                                                                                            | 13.7      | 254       |
| 6  | Complexes of Borane and N-Heterocyclic Carbenes: A New Class of Radical Hydrogen Atom Donor.<br>Journal of the American Chemical Society, 2008, 130, 10082-10083.                                                                                                                                                                                                                                                     | 13.7      | 253       |
| 7  | Silicates as Latent Alkyl Radical Precursors: Visibleâ€Light Photocatalytic Oxidation of Hypervalent<br>Bisâ€Catecholato Silicon Compounds. Angewandte Chemie - International Edition, 2015, 54, 11414-11418.                                                                                                                                                                                                         | 13.8      | 247       |
| 8  | PtCl2-Catalyzed Cycloisomerizations of 5-En-1-yn-3-ol Systems. Journal of the American Chemical Society, 2004, 126, 8656-8657.                                                                                                                                                                                                                                                                                        | 13.7      | 234       |
| 9  | Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic<br>Compounds. Journal of the American Chemical Society, 2009, 131, 2993-3006.                                                                                                                                                                                                                                                 | 13.7      | 226       |
| 10 | Photoredox Catalysis for the Generation of Carbon Centered Radicals. Accounts of Chemical<br>Research, 2016, 49, 1924-1936.<br>The Filed of a Hydroxy Protecting Group on the PtCl2-Catalyzed Cyclization of Dienvnesäf."A Novel                                                                                                                                                                                      | 15.6      | 226       |
| 11 | Efficient, and Selective Synthesis of Carbocycles Acknowledgement is made to the EU for the COST D12<br>Action "Cascade Free Radical Reactions―and for a short-term scientific mission to Madrid (EM). We<br>thank Nieves Arroyo (CSIC) for preliminary experiments, Dr. J. Vaissermann (UPMC) for the X-ray<br>analysis of 3 e Dr. M. L. limeno (CNOO) for NMR studies on 3 a. Dr. MN. Rager (FNSCP) for NMR studie. | 13.8<br>S | 206       |
| 12 | on 38€‰h, 6, and. Angewandte Chemie - International Edition, 2002, 41, 2132.<br>EPR Studies of the Generation, Structure, and Reactivity of N-Heterocyclic Carbene Borane Radicals.<br>Journal of the American Chemical Society, 2010, 132, 2350-2358.                                                                                                                                                                | 13.7      | 205       |
| 13 | Tandem Gold(I)-Catalyzed Cyclization/Electrophilic Cyclopropanation of Vinyl Allenes. Organic<br>Letters, 2007, 9, 2207-2209.                                                                                                                                                                                                                                                                                         | 4.6       | 175       |
| 14 | Nonâ€Innocent Ligands: New Opportunities in Iron Catalysis. European Journal of Inorganic Chemistry,<br>2012, 2012, 376-389.                                                                                                                                                                                                                                                                                          | 2.0       | 157       |
| 15 | Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence<br>for a Cu <sup>II</sup> /Cu <sup>I</sup> Mechanism. Chemistry - A European Journal, 2013, 19, 10809-10813.                                                                                                                                                                                                       | 3.3       | 142       |
| 16 | Oxidation of Alkyl Trifluoroborates: An Opportunity for Tinâ€Free Radical Chemistry. Angewandte<br>Chemie - International Edition, 2010, 49, 8721-8723.                                                                                                                                                                                                                                                               | 13.8      | 135       |
| 17 | Gold―and Platinum atalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An<br>Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.                                                                                                                                                                                                                                | 3.3       | 129       |
| 18 | NHC apped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere,<br>and Cavityâ€Dependent Catalysis, Angewandte Chemie - International Edition, 2013, 52, 7213-7218.                                                                                                                                                                                                                  | 13.8      | 128       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Role of Bent Acyclic Allene Gold Complexes in Axisâ€toâ€Center Chirality Transfers. Angewandte<br>Chemie - International Edition, 2008, 47, 7534-7538.                                            | 13.8 | 125       |
| 20 | From PtCl2- and Acid-Catalyzed to Uncatalyzed Cycloisomerization of 2-Propargyl Anilines: Access to Functionalized Indoles. Angewandte Chemie - International Edition, 2007, 46, 1881-1884.           | 13.8 | 124       |
| 21 | N-Heterocyclic Carbenesâ^'Borane Complexes: A New Class of Initiators for Radical<br>Photopolymerization. Macromolecules, 2010, 43, 2261-2267.                                                        | 4.8  | 123       |
| 22 | Radical Deoxygenation of Xanthates and Related Functional Groups with New Minimalist<br>N-Heterocyclic Carbene Boranes. Organic Letters, 2010, 12, 3002-3005.                                         | 4.6  | 113       |
| 23 | PtCl2-Catalyzed Cycloisomerizations of Allenynes. Journal of the American Chemical Society, 2004, 126, 3408-3409.                                                                                     | 13.7 | 108       |
| 24 | Visible‣ight Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Advanced Synthesis and Catalysis, 2013, 355, 1477-1482.                                                        | 4.3  | 104       |
| 25 | Gold―vs. Platinumâ€Catalyzed Polycyclizations by <i>O</i> â€Acyl Migration. Solventâ€Free Reactions.<br>Advanced Synthesis and Catalysis, 2008, 350, 43-48.                                           | 4.3  | 98        |
| 26 | Tracking gold acetylides in gold(i)-catalyzed cycloisomerization reactions of enynes. Chemical Science, 2011, 2, 2417.                                                                                | 7.4  | 97        |
| 27 | Redox-ligand sustains controlled generation of CF <sub>3</sub> radicals by well-defined copper complex. Chemical Science, 2016, 7, 2030-2036.                                                         | 7.4  | 96        |
| 28 | Iron and cobalt catalysis: new perspectives in synthetic radical chemistry. Chemical Society Reviews, 2020, 49, 8501-8542.                                                                            | 38.1 | 91        |
| 29 | Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry, 2019, 11, 797-805.                                            | 13.6 | 84        |
| 30 | Ionic and Organometallic Reductions with Nâ€Heterocyclic Carbene Boranes. Chemistry - A European<br>Journal, 2009, 15, 12937-12940.                                                                   | 3.3  | 83        |
| 31 | PtCl2-Catalyzed Transannular Cycloisomerization of 1,5-Enynes:  A New Efficient Regio- and Stereocontrolled Access to Tricyclic Derivatives. Organic Letters, 2004, 6, 3771-3774.                     | 4.6  | 82        |
| 32 | Radical Migration of Substituents of Aryl Groups on Quinazolinones Derived from <i>N</i> -Acyl<br>Cyanamides. Journal of the American Chemical Society, 2010, 132, 4381-4387.                         | 13.7 | 81        |
| 33 | Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis. Chemical Communications, 2016, 52, 9877-9880.                                      | 4.1  | 81        |
| 34 | Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl<br>cross coupling reactions. Organic Chemistry Frontiers, 2016, 3, 462-465.                   | 4.5  | 80        |
| 35 | Dual Photoredox/Gold Catalysis Arylative Cyclization of <i>o</i> -Alkynylphenols with Aryldiazonium<br>Salts: A Flexible Synthesis of Benzofurans. Journal of Organic Chemistry, 2016, 81, 7182-7190. | 3.2  | 79        |
| 36 | Enantioselective lr <sup>I</sup> â€Catalyzed Carbocyclization of 1,6â€Enynes by the Chiral Counterion<br>Strategy. Chemistry - A European Journal, 2011, 17, 13789-13794.                             | 3.3  | 77        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Tin-free radical chemistry: intramolecular addition of alkyl radicals to aldehydes and ketones.<br>Tetrahedron Letters, 1999, 40, 5511-5514.                                                                                 | 1.4  | 74        |
| 38 | Suzukiâ^'Miyaura Coupling of NHCâ^'Boranes: A New Addition to the Câ^'C Coupling Toolbox. Organic<br>Letters, 2009, 11, 4914-4917.                                                                                           | 4.6  | 74        |
| 39 | Gold(I)-Catalyzed Cyclization of β-Allenylhydrazones: An Efficient Synthesis of<br>Multisubstituted <i>N</i> -Aminopyrroles. Organic Letters, 2010, 12, 4396-4399.                                                           | 4.6  | 74        |
| 40 | Estimated Rate Constants for Hydrogen Abstraction from N-Heterocyclic Carbeneâ^'Borane Complexes<br>by an Alkyl Radical. Organic Letters, 2010, 12, 2998-3001.                                                               | 4.6  | 72        |
| 41 | Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox<br>Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1789-1793.                                                 | 13.8 | 68        |
| 42 | Tandem PtCl2 catalyzed–thermal [3,3] rearrangements of enyne acetates. Tetrahedron, 2004, 60,<br>9745-9755.                                                                                                                  | 1.9  | 67        |
| 43 | An intramolecular Diels-Alder reaction of vinylsilanes. Journal of Organic Chemistry, 1992, 57, 5279-5281.                                                                                                                   | 3.2  | 66        |
| 44 | Gold(i)-catalysed cycloisomerisation of 1,6-enynes into functionalised allenes. Chemical<br>Communications, 2010, 46, 865.                                                                                                   | 4.1  | 66        |
| 45 | Rhâ€Catalyzed [5+1] and [4+1] Cycloaddition Reactions of 1,4â€Enyne Esters with CO: A Shortcut to<br>Functionalized Resorcinols and Cyclopentenones. Chemistry - A European Journal, 2012, 18, 7243-7247.                    | 3.3  | 65        |
| 46 | From Acyclic Precursors to Linear Triquinanes through a Diastereoselective One-Pot Process. A New<br>Illustration of the Synthetic Power of Radical Cascades. Journal of Organic Chemistry, 1998, 63,<br>6764-6765.          | 3.2  | 63        |
| 47 | 5-Endo-TrigRadical Cyclizations of Bromomethyldimethylsilyl Diisopropylpropargylic Ethers. A Highly<br>Diastereoselective Access to Functionalized Cyclopentanes. Journal of Organic Chemistry, 1999, 64,<br>4920-4925.      | 3.2  | 62        |
| 48 | Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic<br>Center. CheM, 2017, 3, 174-191.                                                                                      | 11.7 | 62        |
| 49 | Iron atalyzed Reductive Radical Cyclization of Organic Halides in the Presence of NaBH <sub>4</sub> :<br>Evidence of an Active Hydridoâ€Iron(I) Catalyst. Angewandte Chemie - International Edition, 2012, 51,<br>6942-6946. | 13.8 | 61        |
| 50 | Intramolecular Homolytic Substitution of Sulfinates and Sulfinamides. Chemistry - A European<br>Journal, 2009, 15, 10225-10232.                                                                                              | 3.3  | 58        |
| 51 | When NHC Ligands Make a Difference in Gold Catalysis. Israel Journal of Chemistry, 2013, 53, 892-900.                                                                                                                        | 2.3  | 58        |
| 52 | Silver-Catalyzed Cycloisomerization of 1,n-Allenynamides. Organic Letters, 2011, 13, 2952-2955.                                                                                                                              | 4.6  | 51        |
| 53 | Assessing Ligand and Counterion Effects in the Noble Metal Catalyzed Cycloisomerization Reactions of 1,6-Allenynes: a Combined Experimental and Theoretical Approach. ACS Catalysis, 2016, 6, 5146-5160.                     | 11.2 | 50        |
| 54 | Metalâ€Promoted Coupling Reactions Implying Ligandâ€Based Redox Changes. ChemCatChem, 2016, 8,<br>3310-3316.                                                                                                                 | 3.7  | 49        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Secondary Phosphine Oxide–Gold(I) Complexes and Their First Application in Catalysis.<br>Organometallics, 2014, 33, 4051-4056.                                                                                                                                       | 2.3  | 47        |
| 56 | Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl<br>radicals by single electron transfer and their synthetic utilization. Chemical Society Reviews, 2022, 51,<br>1470-1510.                                             | 38.1 | 44        |
| 57 | Spirosilane Derivatives as Fluoride Sensors. Organic Letters, 2013, 15, 748-751.                                                                                                                                                                                     | 4.6  | 43        |
| 58 | Iminosemiquinone radical ligands enable access to a well-defined redox-active<br>Cu <sup>II</sup> –CF <sub>3</sub> complex. Chemical Communications, 2014, 50, 10394-10397.                                                                                          | 4.1  | 43        |
| 59 | N-Heterocyclic carbene-stabilized gold nanoparticles with tunable sizes. Dalton Transactions, 2018, 47, 6850-6859.                                                                                                                                                   | 3.3  | 43        |
| 60 | β-Cyclodextrin–NHC–Gold(I) Complex (β-ICyD)AuCl: A Chiral Nanoreactor for Enantioselective and<br>Substrate-Selective Alkoxycyclization Reactions. ACS Catalysis, 2020, 10, 5964-5972.                                                                               | 11.2 | 39        |
| 61 | Silanol reactivity: evaluation of silanolate as a metalation-directing group. Journal of Organic<br>Chemistry, 1993, 58, 6314-6318.                                                                                                                                  | 3.2  | 38        |
| 62 | (Pentamethylcyclopentadienyl)Iridium Dichloride Dimer {[IrCp*Cl <sub>2</sub> ] <sub>2</sub> }: A<br>Novel Efficient Catalyst for the Cycloisomerizations of Homopropargylic Diols and Nâ€Tethered Enynes.<br>Advanced Synthesis and Catalysis, 2011, 353, 1908-1912. | 4.3  | 37        |
| 63 | Photoredox/Nickel Dual Catalysis for the C(sp <sup>3</sup> )–C(sp <sup>3</sup> ) Crossâ€Coupling of Alkylsilicates with Alkyl Halides. European Journal of Organic Chemistry, 2017, 2017, 2118-2121.                                                                 | 2.4  | 37        |
| 64 | Cross coupling of alkylsilicates with acyl chlorides <i>via</i> photoredox/nickel dual catalysis: a new synthesis method for ketones. Organic Chemistry Frontiers, 2019, 6, 1378-1382.                                                                               | 4.5  | 37        |
| 65 | Niobium-Catalyzed Intramolecular Addition of O–H and N–H Bonds to Alkenes: A Tool for<br>Hydrofunctionalization. Organic Letters, 2017, 19, 2062-2065.                                                                                                               | 4.6  | 34        |
| 66 | The Role of Water in Platinumâ€Catalyzed Cycloisomerization of 1,6â€Enynes: A Combined Experimental and<br>Theoretical Gas Phase Study. ChemCatChem, 2009, 1, 138-143.                                                                                               | 3.7  | 33        |
| 67 | Circumventing Intrinsic Metal Reactivity: Radical Generation with Redoxâ€Active Ligands. Chemistry - A<br>European Journal, 2017, 23, 15030-15034.                                                                                                                   | 3.3  | 33        |
| 68 | Permethylated NHC apped α―and β yclodextrins (ICyD <sup>Me</sup> ) Regioselective and<br>Enantioselective Gold atalysis in Pure Water. Chemistry - A European Journal, 2020, 26, 15901-15909.                                                                        | 3.3  | 32        |
| 69 | Activation of Allenes by Gold Complexes: A Theoretical Standpoint. Topics in Current Chemistry, 2011, 302, 157-182.                                                                                                                                                  | 4.0  | 31        |
| 70 | Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent<br>Ligands. Angewandte Chemie - International Edition, 2016, 55, 10712-10716.                                                                                       | 13.8 | 31        |
| 71 | Synthesis of Aliphatic Amides through a Photoredox Catalyzed Radical Carbonylation Involving<br>Organosilicates as Alkyl Radical Precursors. Advanced Synthesis and Catalysis, 2020, 362, 2254-2259.                                                                 | 4.3  | 31        |
| 72 | Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes.<br>Reaction Chemistry and Engineering, 2018, 3, 930-941.                                                                                                                | 3.7  | 30        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Copperâ€Catalyzed Aziridination with Redoxâ€Active Ligands: Molecular Spin Catalysis. Chemistry - A<br>European Journal, 2018, 24, 5086-5090.                                                                  | 3.3  | 28        |
| 74 | New elements in the gold(I)-catalyzed cycloisomerization of enynyl ester derivatives embedding a cyclohexane template. Journal of Organometallic Chemistry, 2011, 696, 388-399.                                | 1.8  | 27        |
| 75 | Tandem CH Activation/Arylation Catalyzed by Lowâ€Valent Iron Complexes with Bisiminopyridine<br>Ligands. Chemistry - A European Journal, 2014, 20, 4754-4761.                                                 | 3.3  | 27        |
| 76 | Single-Electron-Transfer Oxidation of Trifluoroborates and Silicates with Organic Reagents: A Comparative Study. Synlett, 2016, 27, 731-735.                                                                   | 1.8  | 27        |
| 77 | Ring Expansions Within the Goldâ€Catalyzed Cycloisomerization of <i>O</i> â€Tethered 1,6â€Enynes.<br>Application to the Synthesis of Naturalâ€Productâ€like Macrocycles. ChemCatChem, 2013, 5, 1096-1099.      | 3.7  | 26        |
| 78 | Intramolecular addition of vinyl radicals to aldehydes. Tetrahedron Letters, 1998, 39, 833-836.                                                                                                                | 1.4  | 25        |
| 79 | Homolytic Reduction of Onium Salts. Chimia, 2012, 66, 425-432.                                                                                                                                                 | 0.6  | 25        |
| 80 | Chiral Acyclic Diaminocarbene Complexes: a New Opportunity for Gold Asymmetric Catalysis.<br>ChemCatChem, 2012, 4, 1065-1066.                                                                                  | 3.7  | 25        |
| 81 | Synthesis of Allenes Bearing Phosphine Oxide Groups and Investigation of Their Reactivity toward Gold Complexes. Advanced Synthesis and Catalysis, 2015, 357, 2213-2218.                                       | 4.3  | 23        |
| 82 | Synthesis of Stable Pentacoordinate Silicon(IV)–NHC Adducts: An Entry to Anionic N-Heterocyclic<br>Carbene Ligands. Organometallics, 2018, 37, 517-520.                                                        | 2.3  | 22        |
| 83 | Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox<br>Catalysis. Angewandte Chemie, 2019, 131, 1803-1807.                                                          | 2.0  | 22        |
| 84 | A Parisian Vision of the Chemistry of Hypercoordinated Silicon Derivatives. Chemical Record, 2021, 21, 1119-1129.                                                                                              | 5.8  | 21        |
| 85 | Direct Synthesis of Nâ€Heterocyclic Carbene‣tabilized Copper Nanoparticles from an Nâ€Heterocyclic<br>Carbene–Borane. Chemistry - A European Journal, 2019, 25, 11481-11485.                                   | 3.3  | 20        |
| 86 | Transition-Metal-Free Silylation of Unactivated C(sp <sup>2</sup> )–H Bonds with<br><i>tert</i> Butyl-Substituted Silyldiazenes. ACS Catalysis, 2021, 11, 13085-13090.                                         | 11.2 | 20        |
| 87 | Bis-phosphine allene ligand: coordination chemistry and preliminary applications in catalysis.<br>Chemical Communications, 2016, 52, 6785-6788.                                                                | 4.1  | 18        |
| 88 | Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and<br>Cycloisomerization of Enyne. Organometallics, 2013, 32, 1665-1673.                                        | 2.3  | 17        |
| 89 | Elucidating Dramatic Ligand Effects on SET Processes: Iron Hydride versus Iron Borohydride Catalyzed<br>Reductive Radical Cyclization of Unsaturated Organic Halides. Organometallics, 2018, 37, 761-771.<br>– | 2.3  | 17        |
| 90 | Versatile Access to Martin's Spirosilanes and Their Hypervalent Derivatives. Journal of Organic<br>Chemistry, 2015, 80, 3280-3288.                                                                             | 3.2  | 16        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Cold atalyzed Migration of Propargyl Acetate as an Entry into the Total Synthesis of Natural<br>Products. Israel Journal of Chemistry, 2018, 58, 586-595.                                 | 2.3  | 14        |
| 92  | Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State.<br>IScience, 2020, 23, 100955.                                                        | 4.1  | 14        |
| 93  | Towards the Synthesis of 3â€Silapiperidines. European Journal of Organic Chemistry, 2009, 2009, 1674-1678.                                                                                | 2.4  | 13        |
| 94  | Iron(II) catalyzed reductive radical cyclization reactions of bromoacetals in the presence of NaBH4: optimization studies and mechanistic insights. Tetrahedron, 2016, 72, 7727-7737.     | 1.9  | 13        |
| 95  | Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones. Science China Chemistry, 2019, 62, 1542-1546.                                      | 8.2  | 13        |
| 96  | Titanocene-Mediated Homolytic Opening of Epoxysilanes. Helvetica Chimica Acta, 2006, 89, 2297-2305.                                                                                       | 1.6  | 12        |
| 97  | Metalated-Arene-Phosphino Ligands: A Novel Approach to Open-Sided Gold Compounds.<br>Organometallics, 2010, 29, 6636-6638.                                                                | 2.3  | 12        |
| 98  | Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp2-Csp cross-coupling. Nature Communications, 2022, 13, 2295.         | 12.8 | 12        |
| 99  | Phenyl Silicates with Substituted Catecholate Ligands: Synthesis, Structural Studies and Reactivity.<br>Chemistry - A European Journal, 2021, 27, 8782-8790.                              | 3.3  | 11        |
| 100 | Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I)<br>Catalysis. Angewandte Chemie - International Edition, 2021, 60, 19879-19888.       | 13.8 | 11        |
| 101 | Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic<br>Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487. | 4.6  | 11        |
| 102 | 8.27 Reduction of Saturated Alcohols and Amines to Alkanes. , 2014, , 1011-1030.                                                                                                          |      | 10        |
| 103 | Chiral Phosphate in Rhodium atalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or<br>Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.                              | 3.3  | 10        |
| 104 | Interaction between Spirosilanes and Lewis Bases: from Coordination to Frustration. Chemistry - A<br>European Journal, 2019, 25, 9438-9442.                                               | 3.3  | 10        |
| 105 | A HELIXOLâ€Derived Bisphosphinite Ligand: Synthesis and Application in Gold atalyzed Enynes<br>Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.          | 2.4  | 9         |
| 106 | Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent<br>Ligands. Angewandte Chemie, 2016, 128, 10870-10874.                                   | 2.0  | 8         |
| 107 | Straightforward Access to 2-lodoindolizines via lodine-Mediated Cyclization of 2-Pyridylallenes.<br>Organic Process Research and Development, 2020, 24, 817-821.                          | 2.7  | 7         |
| 108 | Organometallic catalysis under visible light activation: benefits and preliminary rationales.<br>Photochemical and Photobiological Sciences, 2022, , 1.                                   | 2.9  | 7         |

| #   | Article                                                                                                                                                                                                      | IF           | CITATIONS   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| 109 | Amination of Cyclohexane by Dielectric Barrier Discharge Processing in a Continuous Flow<br>Microreactor: Experimental and Simulation Studies. Plasma Chemistry and Plasma Processing, 2021, 41,<br>351-368. | 2.4          | 6           |
| 110 | Helical Bisphosphinites in Asymmetric Tsujiâ€Trost Allylation: a Remarkable P:Pd Ratio Effect.<br>ChemCatChem, 2021, 13, 4543-4548.                                                                          | 3.7          | 6           |
| 111 | Gold( <scp>i</scp> )-catalyzed access to neomerane skeletons. Organic Chemistry Frontiers, 2017, 4,<br>1906-1916.                                                                                            | 4.5          | 5           |
| 112 | Visible-Light-Mediated Z-Stereoselective Monoalkylation of β,β-Dichlorostyrenes by Photoredox/Nickel<br>Dual Catalysis. Synlett, 2021, 32, 1513-1518.                                                        | 1.8          | 4           |
| 113 | Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon<br>Derivatives. Angewandte Chemie, 2022, 134, .                                                            | 2.0          | 4           |
| 114 | The Invention of New Methodologies: An Opportunity for Dating Natural Products. Synlett, 2018, 29, 2108-2116.                                                                                                | 1.8          | 3           |
| 115 | Synthesis and reactivity of an anionic NHC-borane featuring a weakly coordinating silicate anion.<br>Journal of Organometallic Chemistry, 2021, 956, 122120.                                                 | 1.8          | 3           |
| 116 | Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon<br>Derivatives. Angewandte Chemie - International Edition, 2022, 61, .                                     | 13.8         | 3           |
| 117 | Synthesis and Reactivity of Martin's Spirosilane-Derived Chloromethylsilicate. Molecules, 2022, 27, 1767.                                                                                                    | 3.8          | 3           |
| 118 | GOLD-CATALYZED REACTIONS OF PROPARGYLIC ESTERS. Catalytic Science Series, 2014, , 331-391.                                                                                                                   | 0.0          | 2           |
| 119 | Photochemical studies on bis-sulfide and -sulfone tethered polyenic derivatives. Organic and Biomolecular Chemistry, 2017, 15, 4180-4190.                                                                    | 2.8          | 2           |
| 120 | Iron and Single Electron Transfer: All is in the Ligand. Israel Journal of Chemistry, 2017, 57, 1160-1169.                                                                                                   | 2.3          | 2           |
| 121 | Towards Visibleâ€Light Photocatalytic Reduction of Hypercoordinated Silicon Species. Helvetica<br>Chimica Acta, 2020, 103, e1900238.                                                                         | 1.6          | 2           |
| 122 | Bis(catecholato)silicates: Synthesis and Structural Data. European Journal of Inorganic Chemistry, 0, ,                                                                                                      | 2.0          | 2           |
| 123 | Innentitelbild: Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion<br>(Angew. Chem. 48/2010). Angewandte Chemie, 2010, 122, 9198-9198.                                          | 2.0          | 1           |
| 124 | Inside Cover: Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion<br>(Angew. Chem. Int. Ed. 48/2010). Angewandte Chemie - International Edition, 2010, 49, 9014-9014.            | 13.8         | 1           |
| 125 | Introduction: Radicals, from Gomberg to Planet Mars. , 2021, , .                                                                                                                                             |              | 1           |
| 126 | Titelbild: Komplexe von N-heterocyclischen Carbenen mit Boranen: Synthese und Reaktionen (Angew.) Tj ETQo                                                                                                    | 0 0 0 rgBT / | Overlock 10 |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | 15 Silicates in Photocatalysis. , 2019, , .                                                                                                                  |     | 0         |
| 128 | Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I)<br>Catalysis. Angewandte Chemie, 2021, 133, 20032-20041. | 2.0 | 0         |