Ronald Melki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181499/publications.pdf

Version: 2024-02-01

80 papers

8,349 citations

71102 41 h-index 75 g-index

84 all docs 84 docs citations

84 times ranked 8358 citing authors

#	Article	IF	CITATIONS
1	Endogenous Levels of Alpha-Synuclein Modulate Seeding and Aggregation in Cultured Cells. Molecular Neurobiology, 2022, 59, 1273-1284.	4.0	15
2	Modelling $\hat{l}\pm$ -Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells, 2022, 11, 1640.	4.1	8
3	<i>C9ORF72</i> -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance, 2022, 5, e202101276.	2.8	6
4	Distinct alphaâ€Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SHâ€SY5Y cells. Journal of Neurochemistry, 2021, 156, 880-896.	3.9	22
5	TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration. Cell Reports, 2021, 34, 108895.	6.4	35
6	Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Nature Communications, 2021, 12, 3817.	12.8	52
7	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	5.3	74
8	LAG3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	6.9	44
9	Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures. Molecular Neurodegeneration, 2021, 16, 54.	10.8	20
10	Structural mapping techniques distinguish the surfaces of fibrillar 1N3R and 1N4R human tau. Journal of Biological Chemistry, 2021, 297, 101252.	3.4	4
11	Cell biology and dynamics of Neuronal Na+/K+-ATPase in health and diseases. Neuropharmacology, 2020, 169, 107461.	4.1	35
12	The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils. Biochemical and Biophysical Research Communications, 2020, 529, 533-539.	2.1	5
13	Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS ONE, 2020, 15, e0237328.	2.5	3
14	Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces. Biochemical and Biophysical Research Communications, 2020, 527, 760-769.	2.1	8
15	The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Scientific Reports, 2020, 10, 4895.	3.3	53
16	Differential Membrane Binding and Seeding of Distinct \hat{l}_{\pm} -Synuclein Fibrillar Polymorphs. Biophysical Journal, 2020, 118, 1301-1320.	0.5	59
17	The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathologica, 2020, 139, 977-1000.	7.7	149
18	Dipeptide repeat derived from C9orf72 hexanucleotide expansions forms amyloids or natively unfolded structures inÂvitro. Biochemical and Biophysical Research Communications, 2020, 526, 410-416.	2.1	7

#	Article	IF	Citations
19	Title is missing!. , 2020, 15, e0237328.		O
20	Title is missing!. , 2020, 15, e0237328.		0
21	Title is missing!. , 2020, 15, e0237328.		0
22	Title is missing!. , 2020, 15, e0237328.		0
23	Increased Immune Activation by Pathologic αâ€ S ynuclein in Parkinson's Disease. Annals of Neurology, 2019, 86, 593-606.	5.3	95
24	αâ€synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. Journal of Neurochemistry, 2019, 150, 522-534.	3.9	201
25	Clustering of Tau fibrils impairs the synaptic composition of α3â€Na ⁺ /K ⁺ ― <scp>ATP</scp> ase and <scp>AMPA</scp> receptors. EMBO Journal, 2019, 38, .	7.8	42
26	Effect of tolytoxin on tunneling nanotube formation and function. Scientific Reports, 2019, 9, 5741.	3.3	36
27	Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room. Npj Parkinson's Disease, 2019, 5, 23.	5.3	57
28	\hat{l}_{\pm} -Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the olfactory bulb. Acta Neuropathologica Communications, 2019, 7, 221.	5.2	70
29	Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports, 2019, 12, 230-244.	4.8	99
30	Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. ELife, 2019, 8, .	6.0	220
31	How the shapes of seeds can influence pathology. Neurobiology of Disease, 2018, 109, 201-208.	4.4	34
32	Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces. Scientific Reports, 2018, 8, 10788.	3.3	20
33	The multitude of therapeutic targets in neurodegenerative proteinopathies. , 2017, , 1-20.		1
34	Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathologica, 2017, 134, 629-653.	7.7	201
35	Prying into the Prion Hypothesis for Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9808-9818.	3.6	213
36	\hat{l}_{\pm} -Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathologica, 2017, 134, 789-808.	7.7	182

#	Article	IF	CITATIONS
37	Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions. Neuron, 2017, 95, 33-50.	8.1	83
38	A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast. PLoS ONE, 2017, 12, e0184905.	2.5	13
39	KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget, 2017, 8, 14502-14515.	1.8	36
40	Structural and functional properties of prefibrillar \hat{l}_{\pm} -synuclein oligomers. Scientific Reports, 2016, 6, 24526.	3.3	125
41	Nanomechanical properties of distinct fibrillar polymorphs of the protein \hat{l}_{\pm} -synuclein. Scientific Reports, 2016, 6, 37970.	3.3	52
42	\hat{l}_{\pm} -Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Scientific Reports, 2016, 6, 19180.	3.3	35
43	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
44	Further exploration of the conformational space of \hat{l}_{\pm} -synuclein fibrils: solid-state NMR assignment of a high-pH polymorph. Biomolecular NMR Assignments, 2016, 10, 5-12.	0.8	36
45	Tunneling nanotubes spread fibrillar αâ€synuclein by intercellular trafficking of lysosomes. EMBO Journal, 2016, 35, 2120-2138.	7.8	286
46	Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathologica Communications, 2016, 4, 117.	5.2	207
47	Data in support of the identification of neuronal and astrocyte proteins interacting with extracellularly applied oligomeric and fibrillar \hat{l}_{\pm} -synuclein assemblies by mass spectrometry. Data in Brief, 2016, 7, 221-228.	1.0	10
48	Axonal transport and secretion of fibrillar forms of \hat{l}_{\pm} -synuclein, $\hat{Al^2}$ 42 peptide and HTTExon 1. Acta Neuropathologica, 2016, 131, 539-548.	7.7	127
49	More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions. Current Genetics, 2016, 62, 265-270.	1.7	15
50	Cellular response of human neuroblastoma cells to \hat{l}_{\pm} -synuclein fibrils, the main constituent of Lewy bodies. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 8-19.	2.4	32
51	αâ€synuclein assemblies sequester neuronal α3â€Na ⁺ /K ⁺ â€ <scp>ATP</scp> ase and <scp>impair</scp> Na ⁺ gradient. EMBO Journal, 2015, 34, 2408-2423.	7.8	177
52	Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases. Journal of Parkinson's Disease, 2015, 5, 217-227.	2.8	107
53	Methyl-branched lipids promote the membrane adsorption of \hat{l}_{\pm} -synuclein by enhancing shallow lipid-packing defects. Physical Chemistry Chemical Physics, 2015, 17, 15589-15597.	2.8	42
54	Molecular Interaction between the Chaperone Hsc70 and the N-terminal Flank of Huntingtin Exon 1 Modulates Aggregation. Journal of Biological Chemistry, 2015, 290, 2560-2576.	3.4	73

#	Article	IF	Citations
55	Sup35p in Its Soluble and Prion States Is Packaged inside Extracellular Vesicles. MBio, 2015, 6, .	4.1	42
56	A Novel Bio-Orthogonal Cross-Linker for Improved Protein/Protein Interaction Analysis. Analytical Chemistry, 2015, 87, 1853-1860.	6.5	24
57	The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro. PLoS ONE, 2015, 10, e0131789.	2.5	3
58	Alpha-synuclein spreading in M83 mice brain revealed by detection of pathological \hat{l} ±-synuclein by enhanced ELISA. Acta Neuropathologica Communications, 2014, 2, 29.	5.2	53
59	\hat{l}^2 -amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia, 2013, 61, 1673-1686.	4.9	80
60	Structural and functional characterization of two alpha-synuclein strains. Nature Communications, 2013, 4, 2575.	12.8	721
61	The Conformation of the Prion Domain of Sup35 p in Isolation and in the Fullâ€Length Protein. Angewandte Chemie - International Edition, 2013, 52, 12741-12744.	13.8	40
62	Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathologica, 2013, 126, 555-573.	7.7	224
63	G51D αâ€ s ynuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Annals of Neurology, 2013, 73, 459-471.	5.3	580
64	The interaction of Hsc70 protein with fibrillar α-Synuclein and its therapeutic potential in Parkinson's disease. Communicative and Integrative Biology, 2012, 5, 94-95.	1.4	20
65	Neuronâ€toâ€neuron transmission of αâ€synuclein fibrils through axonal transport. Annals of Neurology, 2012, 72, 517-524.	5.3	305
66	Identification of Protein Interfaces between $\hat{l}\pm$ -Synuclein, the Principal Component of Lewy Bodies in Parkinson Disease, and the Molecular Chaperones Human Hsc70 and the Yeast Ssa1p. Journal of Biological Chemistry, 2012, 287, 32630-32639.	3.4	40
67	Fibrillar Structure and Charge Determine the Interaction of Polyglutamine Protein Aggregates with the Cell Surface. Journal of Biological Chemistry, 2012, 287, 29722-29728.	3.4	48
68	Fibrillar \hat{l}_{\pm} -Synuclein and Huntingtin Exon 1 Assemblies Are Toxic to the Cells. Biophysical Journal, 2012, 102, 2894-2905.	0.5	220
69	A mutation within the Câ€terminal domain of Sup35p that affects [<i>PSI</i> ⁺] prion propagation. Molecular Microbiology, 2011, 81, 640-658.	2.5	29
70	\hat{l}_{\pm} -Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation, 2011, 121, 715-725.	8.2	722
71	Yeast prions assembly and propagation: Contributions of the prion and non-prion moieties and the nature of assemblies. Prion, 2011, 5, 277-284.	1.8	16
72	Hsc70 Protein Interaction with Soluble and Fibrillar α-Synuclein. Journal of Biological Chemistry, 2011, 286, 34690-34699.	3.4	103

#	Article	IF	CITATION
73	Prion-like transmission of protein aggregates in neurodegenerative diseases. Nature Reviews Molecular Cell Biology, 2010, 11, 301-307.	37.0	640
74	Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature Cell Biology, 2009, 11, 219-225.	10.3	385
75	Molecular Chaperones and the Assembly of the Prion Ure2p in Vitro. Journal of Biological Chemistry, 2008, 283, 15732-15739.	3.4	31
76	Biochemical and Functional Analysis of the Assembly of Full-length Sup35p and Its Prion-forming Domain. Journal of Biological Chemistry, 2007, 282, 1679-1686.	3.4	49
77	Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO Journal, 2006, 25, 822-833.	7.8	101
78	PA700, the regulatory complex of the 26S proteasome, interferes with \hat{l}_{\pm} -synuclein assembly. FEBS Journal, 2005, 272, 4023-4033.	4.7	83
79	Structural Characterization of the Fibrillar Form of the Yeast Saccharomyces cerevisiae Prion Ure2p. Biochemistry, 2004, 43, 5022-5032.	2.5	54
80	The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. Journal of Structural Biology, 2003, 141, 132-142.	2.8	68