
Andreas Schüler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7180906/publications.pdf Version: 2024-02-01

ΔΝΟΡΕΛς SCHÃ1/1 FP

#	Article	IF	CITATIONS
1	Electronic properties and ion migration of " <i>in vacuo</i> ―lithiated nanoporous WO3:Mo thin films. Journal of Applied Physics, 2022, 131, .	2.5	5
2	An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nature Materials, 2022, 21, 804-810.	27.5	97
3	VO2:Ge based thermochromic solar absorber coatings. Solar Energy Materials and Solar Cells, 2022, 240, 111680.	6.2	5
4	Optical properties of in vacuo lithiated nanoporous WO3:Mo thin films as determined by spectroscopic ellipsometry. Optical Materials, 2021, 117, 111091.	3.6	9
5	Strong coloration of nanoporous tungsten oxides by in-vacuo lithiation for all-solid-state electrochromic devices. Thin Solid Films, 2021, 730, 138700.	1.8	8
6	In-line electronic and structural characterization of reactively sputtered Cu-Co-Mn black spinel oxides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 053411.	2.1	0
7	Nanoindentation Reveals Crosslinking Behavior of Solar Encapsulants—The Methodological Advantages over Bulk Methods. Polymers, 2021, 13, 3328.	4.5	2
8	Co-Sputtered Monocrystalline GeSn for Infrared Photodetection. , 2020, , .		2
9	Wide band-pass FSS with reduced periodicity for energy efficient windows at higher frequencies. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7
10	Ni ₃ N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. Angewandte Chemie - International Edition, 2019, 58, 7445-7449.	13.8	217
11	Ni ₃ N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. Angewandte Chemie, 2019, 131, 7523-7527.	2.0	36
12	In-situ and post annealing effect on the microstructure and the optical properties of black Cu-Co-Mn oxide spinel coating for Parabolic Trough Collector (PTC) applications. Journal of Physics: Conference Series, 2019, 1343, 012200.	0.4	3
13	Predicting the thermal performance of thermochromic flat plate solar collectors. Journal of Physics: Conference Series, 2019, 1343, 012201.	0.4	0
14	3D Smith charts scattering parameters frequency-dependent orientation analysis and complex-scalar multi-parameter characterization applied to Peano reconfigurable vanadium dioxide inductors. Scientific Reports, 2019, 9, 18346.	3.3	6
15	Vanadium Oxide Bandstop Tunable Filter for Ka Frequency Bands Based on a Novel Reconfigurable Spiral Shape Defected Ground Plane CPW. IEEE Access, 2018, 6, 12206-12212.	4.2	28
16	Development of a novel mechanical micro-engraving method for the high-aspect-ratio microstructures of an advanced window system. Microelectronic Engineering, 2018, 191, 48-53.	2.4	2
17	Tunable RF Phase Shifters Based on Vanadium Dioxide Metal Insulator Transition. IEEE Journal of the Electron Devices Society, 2018, 6, 965-971.	2.1	12
18	Microfabrication of curved sidewall grooves using scanning nanosecond excimer laser ablation. , 2018, , .		2

2

ANDREAS SCHÃ¹/4LER

#	Article	IF	CITATIONS
19	A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor. Scientific Reports, 2017, 7, 355.	3.3	46
20	Structured transparent low emissivity coatings with high microwave transmission. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	19
21	Dimensional stability analysis of a UV printed polymer microstructure for a novel glazing system. Energy Procedia, 2017, 122, 763-768.	1.8	3
22	Colored solar façades for buildings. Energy Procedia, 2017, 122, 175-180.	1.8	49
23	Elevated transition temperature in Ge doped VO2 thin films. Journal of Applied Physics, 2017, 122, .	2.5	59
24	Energy saving glazing with a wide bandâ€pass FSS allowing mobile communication: upâ€scaling and characterisation. IET Microwaves, Antennas and Propagation, 2017, 11, 1449-1455.	1.4	17
25	Investigation of the metal-insulator transition in VO <inf>2</inf> for electronic switches with sub-1mV/decade steep subthreshold slope. , 2016, , .		1
26	CFSpro: ray tracing for design and optimization of complex fenestration systems using mixed dimensionality approach. Applied Optics, 2016, 55, 5127.	2.1	7
27	Electrothermal actuation of vanadium dioxide for tunable capacitors and microwave filters with integrated microheaters. Sensors and Actuators A: Physical, 2016, 241, 245-253.	4.1	34
28	Structural, electrical and magnetic characterization of in-situ crystallized ZnO:Co thin films synthesized by reactive magnetron sputtering. Materials Chemistry and Physics, 2015, 161, 26-34.	4.0	15
29	Location Based Study of the Annual Thermal Loads with Microstructured Windows in European Climates. Energy Procedia, 2015, 78, 91-96.	1.8	3
30	Experimental Determination of Optical and Thermal Properties of Semi-transparent Photovoltaic Modules Based on Dye-sensitized Solar Cells. Energy Procedia, 2015, 78, 453-458.	1.8	6
31	Fabrication of CMOS-compatible abrupt electronic switches based on vanadium dioxide. Microelectronic Engineering, 2015, 145, 117-119.	2.4	12
32	Temperature-dependent multiangle FTIR NIR–MIR ellipsometry of thermochromic VO2 and V1â^'W O2 films. Solar Energy, 2015, 118, 107-116.	6.1	17
33	Steep-Slope Metal–Insulator-Transition VO ₂ Switches With Temperature-Stable High \$I_{mathrm{{scriptscriptstyle ON}}\$. IEEE Electron Device Letters, 2015, 36, 972-974.	3.9	25
34	Superhard, Antireflective Texturized Coatings Based on Hyperbranched Polymer Composite Hybrids for Thinâ€Film Solar Cell Encapsulation. Energy Technology, 2015, 3, 366-372.	3.8	4
35	Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings. Solar Energy Materials and Solar Cells, 2015, 143, 573-580.	6.2	17
36	CMOS-compatible abrupt switches based on VO <inf>2</inf> metal-insulator transition. , 2015, , .		2

3

ANDREAS SCHÃ¹/4LER

#	Article	IF	CITATIONS
37	Influence of doping in thermochromic V1â^'W O2 and V1â''Al O2 thin films: Twice improved doping fficiency in V1â^'W O2, Journal of Alloys and Compounds, 2015, 621, 206-211. Thermal solar collector with VO2 absorber coating and <mm:math< td=""><td>5.5</td><td>26</td></mm:math<>	5.5	26
38	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si20.gif" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="bold"> V </mml:mi </mml:mrow> <mml:mn mathvariant="bold"> 1 <mml:mo mathvariant="bold"> - </mml:mo> <mml:mi mathvariant="bold"> x <mml:mo w=""> </mml:mo></mml:mi </mml:mn </mml:msub> <mml:mo> <mml:mi< td=""><td>6.1</td><td>21</td></mml:mi<></mml:mo>	6.1	21
39	mathyaria Steep slope VO <inf>2</inf> switches for wide-band (DC-40 GHz) reconfigurable electronics. , 2014, , .		13
40	Reactively sputtered coatings on architectural glazing for coloured active solar thermal façades. Energy and Buildings, 2014, 68, 764-770.	6.7	36
41	Novel black selective coating for tubular solar absorbers based on a sol–gel method. Solar Energy, 2013, 94, 233-239.	6.1	56
42	Solid State Science Special Issue Symposium A on carbon-based nanostructured composite films Nanomaterials and Nanotechnology E-MRS Spring Meeting 2008. Solid State Sciences, 2009, 11, 1737.	3.2	1
43	Sol–gel deposition and optical characterization of multilayered SiO2/Ti1â^'xSixO2 coatings on solar collector glasses. Solar Energy Materials and Solar Cells, 2006, 90, 2894-2907.	6.2	27
44	Structural and optical properties of titanium aluminum nitride films (Ti1â^'xAlxN). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 922-929.	2.1	60
45	Titanium-containing amorphous hydrogenated silicon carbon films (a-Si:C:H/Ti) for durable solar absorber coatings. Solar Energy Materials and Solar Cells, 2001, 69, 271-284.	6.2	34
46	Application of titanium containing amorphous hydrogenated carbon films (a-C:H/Ti) as optical selective solar absorber coatings. Solar Energy Materials and Solar Cells, 2000, 60, 295-307.	6.2	38
47	Optical properties of titanium containing amorphous hydrogenated carbon films (a-C:H/Ti). Journal of Applied Physics, 2000, 87, 4285-4292.	2.5	27
48	In situphotoelectron spectroscopy of titanium-containing amorphous hydrogenated carbon films. Physical Review B, 1999, 60, 16164-16169.	3.2	25