
Hongbo Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179882/publications.pdf Version: 2024-02-01

HONGRO CHI

#	Article	IF	CITATIONS
1	Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 2022, 55, 14-30.	6.6	91
2	mTORC2 forms iron-clad defense to guard memory. Nature Immunology, 2022, 23, 155-156.	7.0	2
3	Immunometabolism at the intersection of metabolic signaling, cell fate, and systems immunology. Cellular and Molecular Immunology, 2022, 19, 299-302.	4.8	19
4	Tregs tango with killer cells in acute infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202400119.	3.3	1
5	Lipid metabolism in T cell signaling and function. Nature Chemical Biology, 2022, 18, 470-481.	3.9	46
6	Retinoic acid signaling acts as a rheostat to balance Treg function. , 2022, 19, 820-833.		8
7	cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature, 2022, 607, 135-141.	13.7	65
8	Impact of T-cell immunity on chemotherapy response in childhood acute lymphoblastic leukemia. Blood, 2022, 140, 1507-1521.	0.6	2
9	Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovascular Research, 2021, 117, 1309-1324.	1.8	21
10	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	5.7	70
11	Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry. Methods in Molecular Biology, 2021, 2285, 297-317.	0.4	1
12	Lipid signalling enforces functional specialization of Treg cells in tumours. Nature, 2021, 591, 306-311.	13.7	187
13	InÂvivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ TÂcell fate decisions. Cell, 2021, 184, 1245-1261.e21.	13.5	68
14	Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR–T-cell responses against ALL. Blood, 2021, 138, 122-135.	0.6	28
15	Metabolic Control of Memory T-Cell Generation and Stemness. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037770.	2.3	6
16	T cell metabolism in homeostasis and cancer immunity. Current Opinion in Biotechnology, 2021, 68, 240-250.	3.3	20
17	Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature, 2021, 595, 724-729.	13.7	62
18	Abstract 237: Inferring spatial organization of tumor microenvironment from single-cell RNA sequencing data using graph embedding. , 2021, , .		0

#	Article	IF	CITATIONS
19	Polyamine: A metabolic compass for T helper cell fate direction. Cell, 2021, 184, 4109-4112.	13.5	6
20	Investigating the Dynamic Changes in iNKT Cell Metabolic Profiles During Development. Methods in Molecular Biology, 2021, 2388, 181-192.	0.4	0
21	LCK senses asparagine for T cell activation. Nature Cell Biology, 2021, 23, 7-8.	4.6	7
22	CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature, 2021, 600, 308-313.	13.7	36
23	The Impact of T Cell Immunity on Chemotherapy Response in Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 703-703.	0.6	0
24	Toward a better understanding of TÂcells in cancer. Cancer Cell, 2021, 39, 1549-1552.	7.7	21
25	Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology, 2020, 20, 55-70.	10.6	393
26	Mevalonate metabolism–dependent protein geranylgeranylation regulates thymocyte egress. Journal of Experimental Medicine, 2020, 217, .	4.2	10
27	Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron, 2020, 105, 975-991.e7.	3.8	287
28	Homeostasis and transitional activation of regulatory T cells require c-Myc. Science Advances, 2020, 6, eaaw6443.	4.7	59
29	Protein Prenylation Drives Discrete Signaling Programs for the Differentiation and Maintenance of Effector Treg Cells. Cell Metabolism, 2020, 32, 996-1011.e7.	7.2	28
30	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
31	Hippo/Mst signaling coordinates cellular quiescence with terminal maturation in iNKT cell development and fate decisions. Journal of Experimental Medicine, 2020, 217, .	4.2	15
32	Preventing Ubiquitination Improves CAR T Cell Therapy via â€̃CAR Merry-Go-Around'. Immunity, 2020, 53, 243-245.	6.6	4
33	Editorial: Hippo Signaling in the Immune System. Frontiers in Immunology, 2020, 11, 587514.	2.2	2
34	Signaling networks in immunometabolism. Cell Research, 2020, 30, 328-342.	5.7	120
35	mTOR signaling at the crossroads of environmental signals and Tâ€cell fate decisions. Immunological Reviews, 2020, 295, 15-38.	2.8	120
36	Autophagy modulates CD4+ T-cell lineage recommitment upon pathogen infection. Cellular and Molecular Immunology, 2020, 17, 682-683.	4.8	0

#	Article	IF	CITATIONS
37	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	6.6	20
38	Novel specialized cell state and spatial compartments within the germinal center. Nature Immunology, 2020, 21, 660-670.	7.0	60
39	AGK Unleashes CD8+ T Cell Glycolysis to Combat Tumor Growth. Cell Metabolism, 2019, 30, 233-234.	7.2	7
40	Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. Immunity, 2019, 51, 1012-1027.e7.	6.6	76
41	Metabolic sleuthing solves a rare immunodeficiency disease. Nature Immunology, 2019, 20, 1264-1266.	7.0	1
42	LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Research, 2019, 29, 391-405.	5.7	45
43	Systems immunology: Integrating multi-omics data to infer regulatory networks and hidden drivers of immunity. Current Opinion in Systems Biology, 2019, 15, 19-29.	1.3	32
44	Helper T cell differentiation. Cellular and Molecular Immunology, 2019, 16, 634-643.	4.8	258
45	Upregulation of PD-L1 via HMGB1-Activated IRF3 and NF-κB Contributes to UV Radiation-Induced Immune Suppression. Cancer Research, 2019, 79, 2909-2922.	0.4	77
46	Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity. Frontiers in Immunology, 2019, 10, 2716.	2.2	122
47	Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature, 2019, 576, 471-476.	13.7	251
48	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	13.5	6
49	Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature, 2019, 565, 101-105.	13.7	141
50	Sin1–mTORC2 signaling drives glycolysis of developing thymocytes. Journal of Molecular Cell Biology, 2019, 11, 91-92.	1.5	3
51	Heme Interaction with the Pyruvate Dehydrogenase Complex: A Novel Strategy to Promote Hypoxic Survival. FASEB Journal, 2019, 33, 652.12.	0.2	3
52	Abstract 524: HMGB1-activated IRF3 and NF-ήB contributes to UV radiation-induced immune suppression by upregulating PD-L1. , 2019, , .		1
53	Metabolic Control and Systems Immunology in Blood Cell Development. Blood, 2019, 134, SCI-43-SCI-43.	0.6	0
54	TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. Journal of Experimental Medicine, 2018, 215, 1023-1034.	4.2	167

#	Article	IF	CITATIONS
55	Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7–driven B lymphopoiesis. Science Advances, 2018, 4, eaar5701.	4.7	35
56	Hallmarks of T-cell Exit from Quiescence. Cancer Immunology Research, 2018, 6, 502-508.	1.6	55
57	Investigating Cellular Quiescence of T Lymphocytes and Antigen-Induced Exit from Quiescence. Methods in Molecular Biology, 2018, 1686, 161-172.	0.4	4
58	Hippo Kinases Mst1 and Mst2 Sense and Amplify IL-2R-STAT5 Signaling in Regulatory T Cells to Establish Stable Regulatory Activity. Immunity, 2018, 49, 899-914.e6.	6.6	84
59	Emerging Roles of Cellular Metabolism in Regulating Dendritic Cell Subsets and Function. Frontiers in Cell and Developmental Biology, 2018, 6, 152.	1.8	39
60	Sprouty branches out to control T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9339-9341.	3.3	1
61	GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. Journal of Experimental Medicine, 2018, 215, 1519-1529.	4.2	143
62	Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature, 2018, 558, 141-145.	13.7	152
63	mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nature Communications, 2018, 9, 2095.	5.8	133
64	Metabolic signaling directs the reciprocal lineage decisions of αβ and γδT cells. Science Immunology, 2018, 3, .	5.6	63
65	Maintenance of CD4 T cell fitness through regulation of Foxo1. Nature Immunology, 2018, 19, 838-848.	7.0	49
66	B7-H4 Modulates Regulatory CD4+ T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. Journal of Immunology, 2018, 201, 897-907.	0.4	34
67	The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4604-4621.	3.9	32
68	Dietary Fat Inflames CD4 + T Cell Memory in Obesity. Cell Metabolism, 2017, 25, 490-492.	7.2	17
69	Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation. Immunity, 2017, 46, 488-503.	6.6	265
70	mTOR signaling in the differentiation and function of regulatory and effector T cells. Current Opinion in Immunology, 2017, 46, 103-111.	2.4	137
71	Gfi1-Foxo1 axis controls the fidelity of effector gene expression and developmental maturation of thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E67-E74.	3.3	11
72	Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature, 2017, 548, 602-606.	13.7	143

#	Article	IF	CITATIONS
73	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	0.8	14
74	Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF–mediated myelopoiesis. Journal of Experimental Medicine, 2017, 214, 2629-2647.	4.2	42
75	PLCÎ ³ -dependent mTOR signalling controls IL-7-mediated early B cell development. Nature Communications, 2017, 8, 1457.	5.8	30
76	Nutrient and Metabolic Sensing in T Cell Responses. Frontiers in Immunology, 2017, 8, 247.	2.2	82
77	mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity, 2016, 45, 540-554.	6.6	283
78	mTOR inhibition potentiates cytotoxicity of Vγ4 γδT cells via up-regulating NKG2D and TNF-α. Journal of Leukocyte Biology, 2016, 100, 1181-1189.	1.5	26
79	Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nature Immunology, 2016, 17, 277-285.	7.0	357
80	Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. Journal of Clinical Investigation, 2016, 126, 1337-1352.	3.9	107
81	Control of IL-17 receptor signaling and tissue inflammation by the p38î±â€"MKP-1 signaling axis in a mouse model of multiple sclerosis. Science Signaling, 2015, 8, ra24.	1.6	27
82	Mammalian Sterile 20-like Kinase 1 (Mst1) Enhances the Stability of Forkhead Box P3 (Foxp3) and the Function of Regulatory T Cells by Modulating Foxp3 Acetylation. Journal of Biological Chemistry, 2015, 290, 30762-30770.	1.6	51
83	Metabolism and lymphocyte biology. Molecular Immunology, 2015, 68, 491.	1.0	0
84	AMPK Helps T Cells Survive Nutrient Starvation. Immunity, 2015, 42, 4-6.	6.6	23
85	Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nature Immunology, 2015, 16, 178-187.	7.0	309
86	Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner. Cancer Research, 2015, 75, 3054-3064.	0.4	35
87	The NLRP12 Sensor Negatively Regulates Autoinflammatory Disease by Modulating Interleukin-4 Production in T Cells. Immunity, 2015, 42, 654-664.	6.6	91
88	mTOR and metabolic regulation of conventional and regulatory T cells. Journal of Leukocyte Biology, 2015, 97, 837-847.	1.5	46
89	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015, 36, 3-12.	2.9	227
90	mTOR signaling, Tregs and immune modulation. Immunotherapy, 2014, 6, 1295-1311.	1.0	108

#	Article	IF	CITATIONS
91	c-Myc and AP4: a relay team for metabolic reprogramming of CD8+ T cells. Nature Immunology, 2014, 15, 828-829.	7.0	5
92	mTOR signaling and transcriptional regulation in T lymphocytes. Transcription, 2014, 5, e28263.	1.7	35
93	Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nature Immunology, 2014, 15, 473-481.	7.0	239
94	Cutting Edge: Discrete Functions of mTOR Signaling in Invariant NKT Cell Development and NKT17 Fate Decision. Journal of Immunology, 2014, 193, 4297-4301.	0.4	51
95	Tsc1 promotes the differentiation of memory CD8 ⁺ T cells via orchestrating the transcriptional and metabolic programs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14858-14863.	3.3	64
96	Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cellular and Molecular Life Sciences, 2014, 71, 1893-1906.	2.4	8
97	mTOR Links Environmental Signals to T Cell Fate Decisions. Frontiers in Immunology, 2014, 5, 686.	2.2	60
98	iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. Journal of Clinical Investigation, 2014, 124, 1685-1698.	3.9	54
99	Allogeneic T Cells Utilize Glycolysis As the Predominant Metabolic Pathway to Induce Acute Graft-Versus-Host Disease. Blood, 2014, 124, 2419-2419.	0.6	2
100	The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nature Immunology, 2013, 14, 1266-1276.	7.0	169
101	T Cell Exit from Quiescence and Differentiation into Th2 Cells Depend on Raptor-mTORC1-Mediated Metabolic Reprogramming. Immunity, 2013, 39, 1043-1056.	6.6	316
102	Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology, 2013, 14, 480-488.	7.0	320
103	mTOR and lymphocyte metabolism. Current Opinion in Immunology, 2013, 25, 347-355.	2.4	85
104	mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature, 2013, 499, 485-490.	13.7	645
105	Gfi1: A unique controller of Tregcells. Cell Cycle, 2013, 12, 3581-3582.	1.3	2
106	I kappa B kinase alpha (IKKα) activity is required for functional maturation of dendritic cells and acquired immunity to infection. EMBO Journal, 2013, 32, 816-828.	3.5	19
107	Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4894-903.	3.3	76
108	Beneficial innate signaling interference for antibacterial responses by a Toll-like receptor–mediated enhancement of the MKP-IRF3 axis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19884-19889.	3.3	16

#	Article	IF	CITATIONS
109	Inhibitory role of the transcription repressor Gfi1 in the generation of thymus-derived regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3198-205.	3.3	12
110	The interplay between regulatory T cells and metabolism in immune regulation. Oncolmmunology, 2013, 2, e26586.	2.1	37
111	Control of T Cell Fates and Immune Tolerance by p38α Signaling in Mucosal CD103+ Dendritic Cells. Journal of Immunology, 2013, 191, 650-659.	0.4	38
112	Metabolic Control of Th17 Cell Generation and CNS Inflammation. Journal of Neurology & Neurophysiology, 2013, s12, .	0.1	6
113	Tuning mTOR activity for immune balance. Journal of Clinical Investigation, 2013, 123, 5001-5004.	3.9	8
114	JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12046-12051.	3.3	85
115	Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E343-52.	3.3	47
116	Inflammasome-Derived IL-1β Regulates the Production of GM-CSF by CD4+ T Cells and γδT Cells. Journal of Immunology, 2012, 188, 3107-3115.	0.4	108
117	Induced senescence: a cunning Fox's new trick. Blood, 2012, 120, 1965-1966.	0.6	1
118	The DNA Damage- and Transcription-Associated Protein Paxip1 Controls Thymocyte Development and Emigration. Immunity, 2012, 37, 971-985.	6.6	35
119	Signaling via the kinase p38α programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nature Immunology, 2012, 13, 152-161.	7.0	93
120	mTOR and metabolic pathways in T cell quiescence and functional activation. Seminars in Immunology, 2012, 24, 421-428.	2.7	91
121	Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews Immunology, 2012, 12, 325-338.	10.6	789
122	Regulation of TH17 cell differentiation by innate immune signals. Cellular and Molecular Immunology, 2012, 9, 287-295.	4.8	89
123	HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine, 2011, 208, 1367-1376.	4.2	1,447
124	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	6.6	1,698
125	Deprivation of MKK7 in cardiomyocytes provokes heart failure in mice when exposed to pressure overload. Journal of Molecular and Cellular Cardiology, 2011, 50, 702-711.	0.9	31
126	Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends in Pharmacological Sciences, 2011, 32, 16-24.	4.0	172

#	Article	IF	CITATIONS
127	Signaling via the RIP2 Adaptor Protein in Central Nervous System-Infiltrating Dendritic Cells Promotes Inflammation and Autoimmunity. Immunity, 2011, 34, 75-84.	6.6	116
128	Signaling by the Phosphatase MKP-1 in Dendritic Cells Imprints Distinct Effector and Regulatory T Cell Fates. Immunity, 2011, 35, 45-58.	6.6	51
129	The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nature Immunology, 2011, 12, 888-897.	7.0	247
130	HIF1a–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Tregcells. Journal of Cell Biology, 2011, 194, i1-i1.	2.3	1
131	The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nature Immunology, 2010, 11, 1047-1056.	7.0	275
132	Naturally Activated Vγ4 γδT Cells Play a Protective Role in Tumor Immunity through Expression of Eomesodermin. Journal of Immunology, 2010, 185, 126-133.	0.4	84
133	Cutting Edge: Critical Role for PYCARD/ASC in the Development of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 184, 4610-4614.	0.4	139
134	Studies on MAP Kinase Signaling in the Immune System. Methods in Molecular Biology, 2010, 661, 471-480.	0.4	3
135	Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination. PLoS Biology, 2009, 7, e1000196.	2.6	130
136	The receptor S1P1 overrides regulatory T cell–mediated immune suppression through Akt-mTOR. Nature Immunology, 2009, 10, 769-777.	7.0	308
137	Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine, 2009, 48, 161-169.	1.4	255
138	Innate recognition of non-self nucleic acids. Genome Biology, 2008, 9, 211.	13.9	36
139	Acetylation of MKP-1 and the Control of Inflammation. Science Signaling, 2008, 1, pe44.	1.6	71
140	Epigenetic and Transcriptional Programs Lead to Default IFN-Î ³ Production by Î ³ δT Cells. Journal of Immunology, 2007, 178, 2730-2736.	0.4	66
141	Mitogen-activated protein kinase phosphatase-1 (MKP-1): a critical regulator of innate immune responses. Journal of Organ Dysfunction, 2007, 3, 72-81.	0.3	3
142	Sensing the enemy within. Nature, 2007, 448, 423-424.	13.7	15
143	COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor–induced entry into the cell cycle from quiescence. Nature Immunology, 2007, 8, 1236-1245.	7.0	116
144	MEKK4 Signaling Regulates Filamin Expression and Neuronal Migration. Neuron, 2006, 52, 789-801.	3.8	105

Номсво Сні

#	Article	IF	CITATIONS
145	The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nature Immunology, 2006, 7, 851-858.	7.0	235
146	Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2274-2279.	3.3	516
147	Critical function of Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis. Journal of Clinical Investigation, 2006, 116, 2344-55.	3.9	73
148	Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3846-3851.	3.3	94
149	JNK1 Is Essential for CD8+ T Cell-Mediated Tumor Immune Surveillance. Journal of Immunology, 2005, 175, 5783-5789.	0.4	33
150	Cutting Edge: Regulation of T Cell Trafficking and Primary Immune Responses by Sphingosine 1-Phosphate Receptor 1. Journal of Immunology, 2005, 174, 2485-2488.	0.4	59
151	GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells. EMBO Journal, 2004, 23, 1576-1586.	3.5	108
152	Somatic Mutation and Germline Variants of MINPP1, a Phosphatase Gene Located in Proximity to PTEN on 10q23.3, in Follicular Thyroid Carcinomas1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1801-1805.	1.8	29
153	Somatic Mutation and Germline Variants of MINPP1, a Phosphatase Gene Located in Proximity to PTEN on 10q23.3, in Follicular Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1801-1805.	1.8	25
154	Absence of germline mutations in MINPP1, a phosphatase encoding gene centromeric of PTEN, in patients with Cowden and Bannayan-Riley- Ruvalcaba syndrome without germline PTEN mutations. Journal of Medical Genetics, 2000, 37, 715-717.	1.5	21
155	Targeted Deletion of Minpp1 Provides New Insight into the Activity of Multiple Inositol Polyphosphate Phosphatase In Vivo. Molecular and Cellular Biology, 2000, 20, 6496-6507.	1.1	63
156	Multiple Inositol Polyphosphate Phosphatase: Evolution as a Distinct Group within the Histidine Phosphatase Family and Chromosomal Localization of the Human and Mouse Genes to Chromosomes 10q23 and 19. Genomics, 1999, 56, 324-336.	1.3	57