Paola Zanovello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179399/publications.pdf Version: 2024-02-01

		66343	28297
112	11,297	42	105
papers	citations	h-index	g-index
117	117	117	14151
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. Leukemia, 2021, 35, 984-1000.	7.2	12
2	Responsiveness to Hedgehog Pathway Inhibitors in T-Cell Acute Lymphoblastic Leukemia Cells Is Highly Dependent on 5′AMP-Activated Kinase Inactivation. International Journal of Molecular Sciences, 2021, 22, 6384.	4.1	2
3	miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells, 2020, 9, 1726.	4.1	17
4	Crosstalk between Hedgehog pathway and the glucocorticoid receptor pathway as a basis for combination therapy in T-cell acute lymphoblastic leukemia. Oncogene, 2020, 39, 6544-6555.	5.9	13
5	Circulating miRNAâ€375 as a potential novel biomarker for active Kaposi's sarcoma in AIDS patients. Journal of Cellular and Molecular Medicine, 2019, 23, 1486-1494.	3.6	8
6	Silencing of miR-182 is associated with modulation of tumorigenesis through apoptosis induction in an experimental model of colorectal cancer. BMC Cancer, 2019, 19, 821.	2.6	22
7	Clonal heterogeneity of melanoma in a paradigmatic case study: future prospects for circulating melanoma cells. Melanoma Research, 2019, 29, 89-94.	1.2	4
8	Chemotactic Cues for NOTCH1-Dependent Leukemia. Frontiers in Immunology, 2018, 9, 633.	4.8	13
9	A coordinate deregulation of microRNAs expressed in mucosa adjacent to tumor predicts relapse after resection in localized colon cancer. Molecular Cancer, 2018, 17, 17.	19.2	15
10	<i>WT1</i> loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, 266-277.	3.5	21
11	A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors. Oncolmmunology, 2017, 6, e1304338.	4.6	13
12	Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine and Growth Factor Reviews, 2017, 36, 99-105.	7.2	37
13	Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Oncolmmunology, 2017, 6, e1313371.	4.6	11
14	A site-selective hyaluronan-interferonα2a conjugate for the treatment of ovarian cancer. Journal of Controlled Release, 2016, 236, 79-89.	9.9	19
15	Reverse immunoediting: When immunity is edited by antigen. Immunology Letters, 2016, 175, 16-20.	2.5	21
16	T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell, 2016, 30, 377-390.	16.8	141
17	Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies. Oncolmmunology, 2016, 5, e1199311.	4.6	21
18	Predictors of immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma: a case report. Infectious Agents and Cancer, 2016, 11, 5.	2.6	9

PAOLA ZANOVELLO

#	Article	IF	CITATIONS
19	A circulating miRNA assay as a first-line test for prostate cancer screening. British Journal of Cancer, 2016, 114, 1362-1366.	6.4	44
20	Reconstruction of gene regulatory modules from RNA silencing of IFN-α modulators: experimental set-up and inference method. BMC Genomics, 2016, 17, 228.	2.8	3
21	Loss of zfp36 expression in colorectal cancer correlates to wnt/ β-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of zeb1, sox9 and macc1. Oncotarget, 2016, 7, 59144-59157.	1.8	53
22	Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma. Immunology, 2015, 146, 33-49.	4.4	5
23	Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience, 2015, 2, 373-381.	2.2	18
24	Peritoneal Tumor Carcinomatosis: Pharmacological Targeting with Hyaluronan-Based Bioconjugates Overcomes Therapeutic Indications of Current Drugs. PLoS ONE, 2014, 9, e112240.	2.5	11
25	PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models. PLoS ONE, 2014, 9, e109427.	2.5	64
26	Functional Avidity–Driven Activation-Induced Cell Death Shapes CTL Immunodominance. Journal of Immunology, 2014, 193, 4704-4711.	0.8	7
27	Small Noncoding RNAs in Cells Transformed by Human T-Cell Leukemia Virus Type 1: a Role for a tRNA Fragment as a Primer for Reverse Transcriptase. Journal of Virology, 2014, 88, 3612-3622.	3.4	116
28	Human miRNome profiling in colorectal cancer and liver metastasis development. Genomics Data, 2014, 2, 184-188.	1.3	7
29	An integrative framework identifies alternative splicing events in colorectal cancer development. Molecular Oncology, 2014, 8, 129-141.	4.6	43
30	Circulating miR-182 is a biomarker of colorectal adenocarcinoma progression. Oncotarget, 2014, 5, 6611-6619.	1.8	53
31	Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics, 2013, 14, 589.	2.8	140
32	Paclitaxel-hyaluronan hydrosoluble bioconjugate: Mechanism of action in human bladder cancer cell lines. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 1261-1269.	1.6	28
33	miR-142-3p Prevents Macrophage Differentiation during Cancer-Induced Myelopoiesis. Immunity, 2013, 38, 1236-1249.	14.3	127
34	Survivin Expression and Prognostic Significance in Pediatric Malignant Peripheral Nerve Sheath Tumors (MPNST). PLoS ONE, 2013, 8, e80456.	2.5	19
35	The MicroRNA Regulatory Network in Normal- and HTLV-1-Transformed T Cells. Advances in Cancer Research, 2012, 113, 45-83.	5.0	6
36	Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood, 2011, 117, 7053-7062.	1.4	199

PAOLA ZANOVELLO

#	Article	IF	CITATIONS
37	A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood, 2011, 118, 2254-2265.	1.4	328
38	Differential down-modulation of HLA class I and II molecule expression on human tumor cell lines upon in vivo transfer. Cancer Immunology, Immunotherapy, 2011, 60, 1639-1645.	4.2	5
39	Immune response to Moloney-murine leukemia virus-induced antigens in bone marrow. Immunology Letters, 2011, 138, 79-85.	2.5	3
40	Immunotherapy for EBV-associated malignancies. International Journal of Hematology, 2011, 93, 281-293.	1.6	29
41	Glycolytic Phenotype and AMP Kinase Modify the Pathologic Response of Tumor Xenografts to VEGF Neutralization. Cancer Research, 2011, 71, 4214-4225.	0.9	67
42	Autoimmune B-cell lymphopenia after successful adoptive therapy with telomerase-specific T lymphocytes. Blood, 2010, 115, 1374-1384.	1.4	33
43	Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 2010, 22, 238-244.	5.5	579
44	Tumor-Induced Tolerance and Immune Suppression Depend on the C/EBPβ Transcription Factor. Immunity, 2010, 32, 790-802.	14.3	782
45	Virus-Specific Cytotoxic CD4+ T Cells for the Treatment of EBV-Related Tumors. Journal of Immunology, 2010, 184, 5895-5902.	0.8	43
46	Impact of Î ³ -chain cytokines on EBV-specific T cell cultures. Journal of Translational Medicine, 2010, 8, 121.	4.4	4
47	Role of microRNAs in HTLV-1 infection and transformation. Molecular Aspects of Medicine, 2010, 31, 367-382.	6.4	37
48	IFN-Î ³ -mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine, 2010, 28, 3548-3557.	3.8	98
49	Reprogramming T Lymphocytes for Melanoma Adoptive Immunotherapy by T-Cell Receptor Gene Transfer with Lentiviral Vectors. Cancer Research, 2009, 69, 9385-9394.	0.9	55
50	<i>In vivo</i> Administration of Artificial Antigen-Presenting Cells Activates Low-Avidity T Cells for Treatment of Cancer. Cancer Research, 2009, 69, 9376-9384.	0.9	61
51	Differential expression of constitutive and inducible proteasome subunits in human monocyteâ€derived DC differentiated in the presence of IFNâ€ <i>α</i> or ILâ€4. European Journal of Immunology, 2009, 39, 56-66.	2.9	24
52	Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate. Nuclear Medicine and Biology, 2009, 36, 525-533.	0.6	22
53	IL4Rα+ Myeloid-Derived Suppressor Cell Expansion in Cancer Patients. Journal of Immunology, 2009, 182, 6562-6568.	0.8	287
54	Tumorâ€induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 2008, 222, 162-179.	6.0	569

Paola Zanovello

#	Article	IF	CITATIONS
55	Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opinion on Biological Therapy, 2008, 8, 1265-1294.	3.1	40
56	Role of arginine metabolism in immunity and immunopathology. Immunobiology, 2008, 212, 795-812.	1.9	133
57	Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Letters, 2008, 267, 216-225.	7.2	103
58	A Paclitaxel-Hyaluronan Bioconjugate Targeting Ovarian Cancer Affords a Potent <i>In vivo</i> Therapeutic Activity. Clinical Cancer Research, 2008, 14, 3598-3606.	7.0	86
59	Preventive Vaccination with Telomerase Controls Tumor Growth in Genetically Engineered and Carcinogen-Induced Mouse Models of Cancer. Cancer Research, 2008, 68, 9865-9874.	0.9	42
60	T-cell receptor gene transfer by lentiviral vectors in adoptive cell therapy. Expert Opinion on Biological Therapy, 2007, 7, 893-906.	3.1	17
61	A gene expression signature associated with survival in metastatic melanoma. Journal of Translational Medicine, 2006, 4, 50.	4.4	93
62	HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2006, 24, 207-215.	1.6	87
63	Survivin in esophageal cancer: An accurate prognostic marker for squamous cell carcinoma but not adenocarcinoma. International Journal of Cancer, 2006, 119, 1717-1722.	5.1	53
64	Leukocyte Infiltration in Cancer Creates an Unfavorable Environment for Antitumor Immune Responses: A Novel Target for Therapeutic Intervention. Immunological Investigations, 2006, 35, 327-357.	2.0	36
65	Predicting Tumor Outcome following Cancer Vaccination by Monitoring Quantitative and Qualitative CD8+ T Cell Parameters. Journal of Immunology, 2006, 176, 1999-2006.	0.8	14
66	Common Cancer Biomarkers. Cancer Research, 2006, 66, 2953-2961.	0.9	96
67	Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 2006, 116, 2777-2790.	8.2	723
68	Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 2005, 5, 641-654.	22.7	1,516
69	Formation and Antitumor Activity of PNU-159682, A Major Metabolite of Nemorubicin in Human Liver Microsomes. Clinical Cancer Research, 2005, 11, 1608-1617.	7.0	74
70	Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4185-4190.	7.1	271
71	Cancer rejection by the immune system: Forcing the check-points of tumor immune escape. Drug Discovery Today Disease Mechanisms, 2005, 2, 191-197.	0.8	2
72	Therapeutic Effectiveness of Recombinant Cancer Vaccines Is Associated with a Prevalent T-Cell Receptor α Usage by Melanoma-specific CD8+ T Lymphocytes. Cancer Research, 2004, 64, 8068-8076.	0.9	22

PAOLA ZANOVELLO

#	Article	IF	CITATIONS
73	Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 2004, 53, 64-72.	4.2	321
74	Melanoma-restricted genes. Journal of Translational Medicine, 2004, 2, 34.	4.4	50
75	L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends in Immunology, 2003, 24, 301-305.	6.8	508
76	IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice. Journal of Immunology, 2003, 170, 270-278.	0.8	445
77	Effective Genetic Vaccination with a Widely Shared Endogenous Retroviral Tumor Antigen Requires CD40 Stimulation during Tumor Rejection Phase. Journal of Immunology, 2003, 171, 6396-6405.	0.8	39
78	Individual Analysis of Mice Vaccinated against a Weakly Immunogenic Self Tumor-Specific Antigen Reveals a Correlation between CD8 T Cell Response and Antitumor Efficacy. Journal of Immunology, 2003, 171, 5172-5179.	0.8	18
79	The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. Cancer Research, 2003, 63, 2158-63.	0.9	34
80	Large and Dissimilar Repertoire of Melan-A/MART-1-Specific CTL in Metastatic Lesions and Blood of a Melanoma Patient. Journal of Immunology, 2002, 169, 4017-4024.	0.8	42
81	Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. Journal of Immunology, 2002, 168, 689-695.	0.8	585
82	Tumor-Induced Immune Dysfunctions Caused by Myeloid Suppressor Cells. Journal of Immunotherapy, 2001, 24, 431-446.	2.4	234
83	MAGE,BAGE, andGAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer, 2001, 91, 1882-1888.	4.1	50
84	MAGE, BAGE andGAGE gene expression in human rhabdomyosarcomas. International Journal of Cancer, 2001, 93, 85-90.	5.1	36
85	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	474
86	Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes. Journal of Immunology, 2000, 165, 6723-6730.	0.8	146
87	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	54
88	DNA-Based Vaccination against Tumors Expressing the P1A Antigen. Methods, 1999, 19, 187-190.	3.8	11
89	Dissecting the Immune Response to Moloney Murine Sarcoma/Leukemia Virus-Induced Tumors by Means of a DNA Vaccination Approach. Journal of Virology, 1999, 73, 2280-2287.	3.4	14
90	DNA Immunization in Mice against Virus-Induced Tumor Antigens. Advances in Experimental Medicine and Biology, 1998, 451, 311-314.	1.6	1

Paola Zanovello

#	Article	IF	CITATIONS
91	CTL Response and Protection Against P815 Tumor Challenge in Mice Immunized with DNA Expressing the Tumor-Specific Antigen P815A. Human Gene Therapy, 1997, 8, 1451-1458.	2.7	38
92	Protein Tyrosine Kinases and Phosphatases Control Apoptosis Induced by Extracellular Adenosine 5′-Triphosphate. Biochemical and Biophysical Research Communications, 1996, 218, 344-351.	2.1	35
93	CD45 Regulates Apoptosis Induced by Extracellular Adenosine Triphosphate and Cytotoxic T Lymphocytes. Biochemical and Biophysical Research Communications, 1996, 226, 769-776.	2.1	12
94	Membrane Form of TNFα Induces both Cell Lysis and Apoptosis in Susceptible Target Cells. Cellular Immunology, 1996, 171, 102-110.	3.0	33
95	Anti-L-selectin monoclonal antibody treatment in mice enhances tumor growth by preventing CTL sensitization in peripheral lymph nodes draining the tumor area. , 1996, 65, 847-851.		12
96	Role of anti-LFA-1 and anti-ICAM-1 combined mab treatment in the rejection of tumors induced by moloney murine sarcoma virus (M-MSV). International Journal of Cancer, 1995, 61, 355-362.	5.1	12
97	Role of Extracellular ATP in Cell-Mediated Cytotoxicity: A Study with ATP-Sensitive and ATP-Resistant Macrophages. Cellular Immunology, 1994, 156, 458-467.	3.0	26
98	Inhibition of Protein Tyrosine Phosphorylation Prevents T-Cell-Mediated Cytotoxicity. Cellular Immunology, 1994, 159, 294-305.	3.0	10
99	Synergistic Effect of Extracellular Adenosine 5â€2-Triphosphate and Tumor Necrosis Factor on DNA Degradation. Cellular Immunology, 1993, 152, 110-119.	3.0	11
100	Cell-Permeabilizing Properties of Extracellular ATP in Relation to Lymphocyte-Mediated Cytotoxicity. , 1993, , 314-320.		0
101	<i>In Vitro</i> Cytotoxic Effects of Extracellular ATP. ATLA Alternatives To Laboratory Animals, 1992, 20, 66-70.	1.0	7
102	Antitumour efficacy of lymphokine-activated killer cells loaded with ricin against experimentally induced lung metastases. Cancer Immunology, Immunotherapy, 1992, 35, 27-32.	4.2	6
103	Extracellular ATP as a possible mediator of cell-mediated cytotoxicity. Trends in Immunology, 1990, 11, 274-277.	7.5	116
104	Extracellular ATP Causes Changes in Plasma Membrane Permeability of Mouse Lymphocytes. Annals of the New York Academy of Sciences, 1990, 603, 427-428.	3.8	0
105	Resistance of lymphokine-activated T lymphocytes to cell-mediated cytotoxicity. Cellular Immunology, 1989, 122, 450-460.	3.0	7
106	In vitro induction of immunological tolerance. Cellular Immunology, 1989, 124, 187-201.	3.0	3
107	HIV-mediated immunodepression: in vitro inhibition of T-lymphocyte proliferative response by ultraviolet-inactivated virus. Clinical Immunology and Immunopathology, 1988, 46, 37-54.	2.0	29
108	Study of Some Early Immunological Parameters in Aging Humans. Gerontology, 1988, 34, 277-283.	2.8	24

#	ARTICLE	IF	CITATIONS
109	Functional activityin vivo of effector T cell populations III. Protection against Moloney murine sarcoma virus (M-MSV)-induced tumors in T cell deficient mice by the adoptive transfer of a M-MSV-specific cytolytic T lymphocyte clone. European Journal of Immunology, 1987, 17, 173-178.	2.9	14
110	Tolerance to viral antigens in Mov-13 mice carrying endogenized moloney-murine leukemia virus. Cellular Immunology, 1984, 83, 379-388.	3.0	6
111	Leukemia-cell rejection due to T-region encoded antigens. Immunogenetics, 1981, 12, 433-443.	2.4	3
112	LACK OF T-CELL MEDIATED CYTOTOXICITY IN M-MSV SYSTEM DEPENDING ON H-2 HAPLOTYPES. International Journal of Immunogenetics, 1979, 6, 341-351.	1.2	6