Michael Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences, 2002, 28, 421-426.	4.2	988
2	Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 1999, 104, 15895-15916.	3.3	595
3	High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene, 2009, 19, 3-49.	1.7	588
4	Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Computers and Geosciences, 1997, 23, 929-945.	4.2	410
5	Interglacials of the last 800,000 years. Reviews of Geophysics, 2016, 54, 162-219.	23.0	359
6	The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters, 1997, 151, 117-123.	4.4	347
7	Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 2005, 438, 483-487.	27.8	291
8	Orbitally-paced climate evolution during the middle Miocene "Monterey―carbon-isotope excursion. Earth and Planetary Science Letters, 2007, 261, 534-550.	4.4	283
9	340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation. Science, 2003, 301, 948-952.	12.6	268
10	Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature, 2010, 466, 226-228.	27.8	247
11	Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography, 2008, 23, .	3.0	213
12	Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas, 2003, 32, 447-461.	2.4	192
13	Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology, 2005, 33, 73.	4.4	150
14	On the 1470-year pacing of Dansgaard-Oeschger warm events. Paleoceanography, 2002, 17, 4-1-4-9.	3.0	147
15	Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature, 2005, 437, 241-244.	27.8	141
16	Trends in coastal upwelling intensity during the late 20th century. Ocean Science, 2010, 6, 815-823.	3.4	137
17	Early Pliocene increase in thermohaline overturning: A precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography, 2010, 25, .	3.0	123
18	Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate over the last 60 ky — Concepts, Reconstruction and Numerical Modeling. , 2001, , 365-410.		121

#	Article	IF	CITATIONS
19	Glacial–interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic. Earth and Planetary Science Letters, 2010, 300, 407-414.	4.4	116
20	Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophysical Research Letters, 1999, 26, 3385-3388.	4.0	112
21	Coherent Resonant Millennial-Scale Climate Oscillations Triggered by Massive Meltwater Pulses. Journal of Climate, 2003, 16, 2569-2585.	3.2	110
22	Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nature Geoscience, 2011, 4, 42-45.	12.9	110
23	Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax ID and II3C. Quaternary Science Reviews, 2010, 29, 2996-3005.	3.0	103
24	Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences, 2017, 14, 827-859.	3.3	103
25	ENSO variability and teleconnections during glacial climates. Quaternary Science Reviews, 2010, 29, 86-100.	3.0	95
26	Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography, 2017, 32, 622-633.	3.0	86
27	Last interglacial temperature evolution – a model inter-comparison. Climate of the Past, 2013, 9, 605-619.	3.4	84
28	Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway. Paleoceanography, 2006, 21, .	3.0	81
29	Sediment-Color Record from the Northeast Atlantic Reveals Patterns of Millennial-Scale Climate Variability during the Past 500,000 Years. Quaternary Research, 2002, 57, 49-57.	1.7	75
30	Interhemispheric space–time attributes of the Dansgaard–Oeschger oscillations between 100 and 0ka. Quaternary Science Reviews, 2002, 21, 1213-1228.	3.0	70
31	Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model. Biogeosciences, 2008, 5, 891-911.	3.3	66
32	Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 2012, 8, 391-402.	3.4	65
33	Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1. Nature Communications, 2012, 3, 965.	12.8	60
34	Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 2012, 317-318, 76-84.	4.4	60
35	Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Marine Micropaleontology, 2010, 77, 58-70.	1.2	58
36	North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM. Climate of the Past, 2015, 11, 175-185.	3.4	58

#	Article	IF	CITATIONS
37	Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0). Geoscientific Model Development, 2018, 11, 1607-1626.	3.6	57
38	Translating Milankovitch climate forcing into eustatic fluctuations via thermal deep water expansion: a conceptual link. Terra Nova, 1997, 9, 228-231.	2.1	56
39	Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene. Geophysical Research Letters, 2002, 29, 46-1-46-4.	4.0	56
40	Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Climate of the Past, 2007, 3, 97-107.	3.4	52
41	Modeling planktonic foraminiferal seasonality: Implications for sea-surface temperature reconstructions. Marine Micropaleontology, 2009, 72, 1-9.	1.2	51
42	Holocene Climate Variability on Centennial-to-Millennial Time Scales: 1. Climate Records from the North-Atlantic Realm. , 2002, , 41-54.		51
43	A coastal upwelling seesaw in the Atlantic Ocean as a result of the closure of the Central American Seaway. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	50
44	Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past, 2008, 4, 125-136.	3.4	50
45	Does Antarctic glaciation force migration of the tropical rain belt?. Geology, 2010, 38, 783-786.	4.4	50
46	Response of the Amazon rainforest to late Pleistocene climate variability. Earth and Planetary Science Letters, 2017, 479, 50-59.	4.4	50
47	Antarctic ice-sheet response to atmospheric CO ₂ and insolation in the Middle Miocene. Climate of the Past, 2009, 5, 633-646.	3.4	49
48	Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation. Geophysical Research Letters, 2005, 32, .	4.0	48
49	Temperature trends during the Present and Last Interglacial periods – a multi-model-data comparison. Quaternary Science Reviews, 2014, 99, 224-243.	3.0	48
50	The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales. Earth and Planetary Science Letters, 2004, 222, 741-750.	4.4	47
51	Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene. Climate of the Past, 2011, 7, 339-347.	3.4	45
52	Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale. Biogeosciences, 2018, 15, 4405-4429.	3.3	41
53	Modeling the seasonal distribution of planktonic foraminifera during the Last Glacial Maximum. Paleoceanography, 2009, 24, .	3.0	40
54	Global prediction of planktic foraminiferal fluxes from hydrographic and productivity data. Biogeosciences, 2006, 3, 187-207.	3.3	38

#	Article	IF	CITATIONS
55	REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series. Computers and Geosciences, 2016, 91, 11-18.	4.2	38
56	Millennial―to Orbitalâ€Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial. Paleoceanography and Paleoclimatology, 2018, 33, 1490-1507.	2.9	36
57	Centennialâ€ŧoâ€millennialâ€scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas, 2003, 32, 447-461.	2.4	34
58	Uplift of Africa as a potential cause for Neogene intensification of the Benguela upwelling system. Nature Geoscience, 2014, 7, 741-747.	12.9	34
59	Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophysical Research Letters, 2014, 41, 4285-4293.	4.0	34
60	Amplification of Holocene multicentennial climate forcing by mode transitions in North Atlantic overturning circulation. Geophysical Research Letters, 2007, 34, .	4.0	33
61	Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet-climate model. Paleoceanography, 2010, 25, n/a-n/a.	3.0	33
62	The tempo of climate change during Dansgaard-Oeschger interstadials and its potential to affect the manifestation of the 1470-year climate cycle. Geophysical Research Letters, 2002, 29, 2–1.	4.0	31
63	Extratropical forcing of Sahel aridity during Heinrich stadials. Geophysical Research Letters, 2009, 36,	4.0	31
64	Towards a quantitative understanding of millennial-scale Antarctic warming events. Quaternary Science Reviews, 2010, 29, 74-85.	3.0	31
65	Reconciling BÃ,lling Warmth with peak deglacial meltwater discharge. Paleoceanography, 2000, 15, 537-540.	3.0	28
66	Glacial–interglacial contrast in climate variability at centennial-to-millennial timescales: observations and conceptual model. Quaternary Science Reviews, 2004, 23, 2219-2230.	3.0	27
67	Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using Xâ€ray computed tomography–based dissolution index, XDX. Paleoceanography, 2011, 26, .	3.0	27
68	Global and regional sea surface temperature trends during Marine Isotope Stage 11. Climate of the Past, 2013, 9, 2231-2252.	3.4	27
69	A model for the potential locations of Triassic evaporite basins driven by paleoclimatic GCM simulations. Clobal and Planetary Change, 1994, 9, 233-249.	3.5	25
70	Solar modulation of North Atlantic central Water formation at multidecadal timescales during the late Holocene. Earth and Planetary Science Letters, 2011, 308, 161-171.	4.4	25
71	Modeling the oxygen-isotopic composition of the North American Ice Sheet and its effect on the isotopic composition of the ocean during the last glacial cycle. Geophysical Research Letters, 2006, 33, .	4.0	24
72	Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Climate of the Past, 2016, 12, 677-695.	3.4	24

#	Article	IF	CITATIONS
73	Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas, 2003, 32, 447-461.	2.4	24
74	Climate variability features of the last interglacial in the East Antarctic EPICA Dome C ice core. Geophysical Research Letters, 2014, 41, 4004-4012.	4.0	23
75	Ocean temperature response to idealized Gleissberg and de Vries solar cycles in a comprehensive climate model. Geophysical Research Letters, 2012, 39, .	4.0	21
76	Planktonic foraminifera shell fluxes from a weekly resolved sediment trap record in the southwestern Atlantic: Evidence for synchronized reproduction. Marine Micropaleontology, 2016, 125, 25-35.	1.2	20
77	Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3. Geophysical Research Letters, 2015, 42, 1903-1911.	4.0	19
78	Modeling the distribution and seasonality ofNeogloboquadrina pachydermain the North Atlantic Ocean during Heinrich Stadial 1. Paleoceanography, 2016, 31, 986-1010.	3.0	19
79	Calcification depths of planktonic foraminifera from the southwestern Atlantic derived from oxygen isotope analyses of sediment trap material. Marine Micropaleontology, 2017, 136, 37-50.	1.2	19
80	Consistent CO2 release by pyrite oxidation on continental shelves prior to glacial terminations. Nature Geoscience, 2019, 12, 929-934.	12.9	19
81	Reduced North Atlantic Central Water formation in response to early Holocene iceâ€sheet melting. Geophysical Research Letters, 2010, 37, .	4.0	18
82	Dependence of slope lapse rate over the Greenland ice sheet on background climate. Journal of Glaciology, 2017, 63, 568-572.	2.2	18
83	Inferring moisture transport across Central America: Can modern analogs of climate variability help reconcile paleosalinity records?. Quaternary Science Reviews, 2010, 29, 1317-1321.	3.0	17
84	Improvement of morphodynamic modeling of tidal channel migration by nudging. Coastal Engineering, 2013, 77, 1-13.	4.0	17
85	Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation. Climate of the Past, 2018, 14, 1165-1178.	3.4	17
86	African dust deposition in Puerto Rico: Analysis of a 20-year rainfall chemistry record and comparison with models. Atmospheric Environment, 2019, 216, 116907.	4.1	17
87	Past and future impact of the winter North Atlantic Oscillation in the Caspian Sea catchment area. International Journal of Climatology, 2020, 40, 2717-2731.	3.5	16
88	Numerical Simulation of Deep-Sea Sediment Transport Induced by a Dredge Experiment in the Northeastern Pacific Ocean. Frontiers in Marine Science, 2021, 8, .	2.5	16
89	Effect of preservation state of planktonic foraminifera tests on the decrease in Mg/Ca due to reductive cleaning and on sample loss during cleaning. Chemical Geology, 2016, 420, 23-36.	3.3	15
90	Exploring Late Pleistocene climate variations. Eos, 2000, 81, 625-630.	0.1	13

6

#	Article	IF	CITATIONS
91	Modeling ocean–atmosphere carbon budgets during the Last Glacial Maximum–Heinrich 1 meltwater event–BÃ,lling transition. International Journal of Earth Sciences, 2001, 90, 412-425.	1.8	13
92	Transient simulations of the present and the last interglacial climate using the Community Climate System Model versionÂ3: effects of orbital acceleration. Geoscientific Model Development, 2016, 9, 3859-3873.	3.6	13
93	Response of precipitation over Greenland and the adjacent ocean to North Pacific warm spells during Dansgaard-Oeschger stadials. Terra Nova, 2002, 14, 295-300.	2.1	12
94	Holocene Climate Variability on Centennial-to-Millennial Time Scales: 2. Internal and Forced Oscillations as Possible Causes. , 2002, , 55-73.		12
95	Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds. Biogeosciences, 2020, 17, 6527-6544.	3.3	12
96	Impact of solarâ€induced stratospheric ozone decline on Southern Hemisphere westerlies during the Late Maunder Minimum. Geophysical Research Letters, 2012, 39, .	4.0	11
97	Investigating the effects of a summer storm on the North Sea stratification using a regional coupled ocean-atmosphere model. Ocean Dynamics, 2017, 67, 211-235.	2.2	11
98	Atmospheric carbon dioxide variations across the middle Miocene climate transition. Climate of the Past, 2021, 17, 703-719.	3.4	11
99	Response of eastern tropical Atlantic central waters to Atlantic meridional overturning circulation changes during the Last Glacial Maximum and Heinrich Stadial 1. Paleoceanography, 2012, 27, .	3.0	10
100	Impacts of Variations in Caspian Sea Surface Area on Catchmentâ€5cale and Largeâ€5cale Climate. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034251.	3.3	10
101	Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11. Paleoceanography, 2017, 32, 1089-1101.	3.0	9
102	A Dynamical Reconstruction of the Global Monthly Mean Oxygen Isotopic Composition of Seawater. Journal of Geophysical Research: Oceans, 2018, 123, 7206-7219.	2.6	9
103	Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows. Journal of Micropalaeontology, 2019, 38, 113-131.	3.6	9
104	Listening to glaciers. Nature Geoscience, 2008, 1, 408-408.	12.9	8
105	Stable water isotopes in the MITgcm. Geoscientific Model Development, 2017, 10, 3125-3144.	3.6	8
106	Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM. Climate Dynamics, 2019, 53, 97-113.	3.8	8
107	Sensitivity of the ocean–atmosphere carbon cycle to ice-covered and ice-free conditions in the Nordic Seas during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207, 127-141.	2.3	7
108	Assessing the ability of the ¹⁴ C projectionâ€age method to constrain the circulation of the past in a 3â€D ocean model. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	7

#	Article	IF	CITATIONS
109	Quaternary oceans and climate change: lessons for the future?. International Journal of Earth Sciences, 2010, 99, 171-189.	1.8	7
110	Influence of topography on tropical African vegetation coverage. Climate Dynamics, 2016, 46, 2535-2549.	3.8	7
111	Orbitally paced climate variability during the Middle Miocene: High resolution benthic foraminiferal stable-isotope records from the tropical western Pacific. Geophysical Monograph Series, 2004, , 321-337.	0.1	6
112	Calcite saturation, foraminiferal test mass, and Mg/Caâ€based temperatures dissolution corrected using XDX—A 150 ka record from the western Indian Ocean. Geochemistry, Geophysics, Geosystems, 2014, 15, 781-797.	2.5	6
113	Coupling of a sediment diagenesis model (MEDUSA) and an Earth system model (CESM1.2): a contribution toward enhanced marine biogeochemical modelling and long-term climate simulations. Geoscientific Model Development, 2020, 13, 825-840.	3.6	5
114	Water Mass Versus Sea Level Effects on Benthic Foraminiferal Oxygen Isotope Ratios in the Atlantic Ocean During the LGM. Paleoceanography and Paleoclimatology, 2019, 34, 98-121.	2.9	4
115	A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579, 110591.	2.3	4
116	Fractal Analyses of Pleistocene Marine Oxygen Isotope Records. , 1994, , 377-387.		4
117	A forward and inverse transformation program for the "Atlas of Lithological-Paleogeographical Maps of the World― Computers and Geosciences, 1995, 21, 907-911.	4.2	3
118	Tracing Climate-Variability: The Search for Climate Dynamics on Decadal to Millennial Time Scales. , 2002, , 125-148.		3
119	Dynamic boreal summer atmospheric circulation response as negative feedback to Greenland melt during the MIS-11 interglacial. Climate of the Past, 2022, 18, 775-792.	3.4	2
120	Correction to "Modeling the oxygen-isotopic composition of the North American Ice Sheet and its effect on the isotopic composition of the ocean during the last glacial cycle― Geophysical Research Letters, 2006, 33, .	4.0	1
121	Simultaneous presence of orbital inclination and eccentricity in proxy climate records from Ocean Drilling Program Site 806: Comment and Reply. Geology, 1997, 25, 860.	4.4	Ο
122	Corrigendum to "Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene" published in Clim. Past, 7, 339–347, 2011. Climate of the Past, 2011, 7, 985-985.	3.4	0
123	A sensor network for long-term monitoring of sediment transport in the coastal region. , 2012, , .		0