Juan Mena-Segovia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7177231/publications.pdf

Version: 2024-02-01

279798 434195 2,516 34 23 31 citations h-index g-index papers 38 38 38 2603 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?. Trends in Neurosciences, 2004, 27, 585-588.	8.6	304
2	A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem. Journal of Neuroscience, 2014, 34, 4509-4518.	3.6	267
3	The basal ganglia in Parkinson's disease: Current concepts and unexplained observations. Annals of Neurology, 2008, 64, S30-S46.	5.3	205
4	Topographical Organization of the Pedunculopontine Nucleus. Frontiers in Neuroanatomy, 2011, 5, 22.	1.7	195
5	Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron, 2017, 94, 7-18.	8.1	192
6	Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. Journal of Physiology, 2008, 586, 2947-2960.	2.9	175
7	Cholinergic modulation of midbrain dopaminergic systems. Brain Research Reviews, 2008, 58, 265-271.	9.0	129
8	Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Frontiers in Neuroanatomy, 2016, 10 , 1 .	1.7	128
9	Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 2016, 19, 1025-1033.	14.8	122
10	GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. Journal of Comparative Neurology, 2009, 515, 397-408.	1.6	94
11	Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Structure and Function, 2014, 219, 1787-1800.	2.3	91
12	Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience, 2010, 170, 78-91.	2.3	57
13	Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calciumâ€binding proteins and are heterogeneously distributed. European Journal of Neuroscience, 2012, 35, 723-734.	2.6	47
14	Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nature Communications, 2020, 11 , 1739 .	12.8	46
15	Structural and functional considerations of the cholinergic brainstem. Journal of Neural Transmission, 2016, 123, 731-736.	2.8	45
16	Modulation of motor behavior by the mesencephalic locomotor region. Cell Reports, 2021, 36, 109594.	6.4	43
17	Targeted Activation of Cholinergic Interneurons Accounts for the Modulation of Dopamine by Striatal Nicotinic Receptors. ENeuro, 2018, 5, ENEURO.0397-17.2018.	1.9	41
18	Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Frontiers in Neural Circuits, 2015, 9, 68.	2.8	39

#	Article	IF	Citations
19	Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons. Journal of Neuroscience, 2019, 39, 4727-4737.	3.6	39
20	Changes in sleep–waking cycle after striatal excitotoxic lesions. Behavioural Brain Research, 2002, 136, 475-481.	2.2	36
21	Distribution of Midbrain Cholinergic Axons in the Thalamus. ENeuro, 2020, 7, ENEURO.0454-19.2019.	1.9	35
22	Divergent motor projections from the pedunculopontine nucleus are differentially regulated in Parkinsonism. Brain Structure and Function, 2014, 219, 1451-62.	2.3	28
23	Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion. Journal of Neurophysiology, 2014, 111, 434-440.	1.8	26
24	Induction of c-fos in nucleus accumbens in naive male Balb/c mice after wheel running. Neuroscience Letters, 2003, 352, 81-84.	2.1	24
25	Dynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents. PLoS ONE, 2013, 8, e67540.	2.5	22
26	Striatal dopaminergic stimulation produces c-Fos expression in the PPT and an increase in wakefulness. Brain Research, 2003, 986, 30-38.	2.2	18
27	Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Scientific Reports, 2021, 11, 9055.	3.3	18
28	Phasic modulation of cortical high-frequency oscillations by pedunculopontine neurons. Progress in Brain Research, 2011, 193, 85-92.	1.4	16
29	Dichotomy between motor and cognitive functions of midbrain cholinergic neurons. Neurobiology of Disease, 2019, 128, 59-66.	4.4	14
30	Long-term effects of striatal lesions on c-Fos immunoreactivity in the pedunculopontine nucleus. European Journal of Neuroscience, 2004, 20, 2367-2376.	2.6	5
31	The Pedunculopontine Nucleus. , 2005, , 533-544.		4
32	Midbrain cholinergic neurons signal negative feedback to promote behavioral flexibility. Trends in Neurosciences, 2022, , .	8.6	1
33	Papers arising from the 12th International Basal Ganglia Society Meeting. March 26th–30th 2017, M©rida, Yucatán, México. European Journal of Neuroscience, 2019, 49, 591-592.	2.6	0
34	Microcircuits of the Pedunculopontine Nucleus. Advances in Behavioral Biology, 2009, , 159-165.	0.2	0