Atsushi Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176548/publications.pdf

Version: 2024-02-01

394421 361022 1,602 66 19 35 citations h-index g-index papers 66 66 66 607 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Trigeminal projections to the nucleus submedius of the thalamus in the rat. Journal of Comparative Neurology, 1991, 307, 609-625.	1.6	152
2	The central projection of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. Journal of Comparative Neurology, 1988, 268, 489-507.	1.6	151
3	The afferent and efferent connections of the nucleus submedius in the rat. Journal of Comparative Neurology, 1992, 324, 115-133.	1.6	116
4	Morphology of single mesencephalic trigeminal neurons innervating masseter muscle of the cat. Brain Research, 1988, 445, 392-399.	2.2	88
5	Two major types of premotoneurons in the feline trigeminal nucleus oralis as demonstrated by intracellular staining with horseradish peroxidase. Journal of Comparative Neurology, 1994, 347, 495-514.	1.6	65
6	Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. Journal of Comparative Neurology, 2009, 514, 368-386.	1.6	58
7	Distribution pattern of inhibitory and excitatory synapses in the dendritic tree of single masseter ?-motoneurons in the cat., 1999, 414, 454-468.		55
8	Light microscopic observations of the contacts made between two spindle afferent types and ?-motoneurons in the cat trigeminal motor nucleus., 1996, 374, 436-450.		53
9	Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat., 1996, 374, 421-435.		46
10	Central distribution of synaptic contacts of primary and secondary jaw muscle spindle afferents in the trigeminal motor nucleus of the cat. Journal of Comparative Neurology, 1998, 391, 50-63.	1.6	45
11	Quantitative ultrastructural analysis of glycine- and ?-aminobutyric acid-immunoreactive terminals on trigeminal ?- and ?-motoneuron somata in the rat. Journal of Comparative Neurology, 2002, 442, 308-319.	1.6	39
12	Synaptic Transmission From the Supratrigeminal Region to Jaw-Closing and Jaw-Opening Motoneurons in Developing Rats. Journal of Neurophysiology, 2008, 100, 1885-1896.	1.8	37
13	Morphologic characteristics of physiologically defined neurons in the cat trigeminal nucleus principalis. Journal of Comparative Neurology, 1998, 401, 308-328.	1.6	36
14	Quantitative Analysis of Synaptic Contacts Made between Functionally Identified Oralis Neurons and Trigeminal Motoneurons in Cats. Journal of Neuroscience, 2001, 21, 6298-6307.	3.6	36
15	Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. Journal of Comparative Neurology, 2000, 426, 13-30.	1.6	33
16	Physiologic and morphologic properties of motoneurons and spindle afferents innervating the temporal muscle in the cat., 1999, 406, 29-50.		32
17	Trigeminal and dorsal column nuclei projections to the anterior pretectal nucleus in the rat. Brain Research, 1992, 590, 81-94.	2.2	31
18	Serotonergic axonal contacts on identified cat trigeminal motoneurons and their correlation with medullary raphe nucleus stimulation., 1997, 384, 443-455.		31

#	Article	IF	Citations
19	Central terminations of low-threshold mechanoreceptive afferents in the trigeminal nuclei interpolaris and caudalis of the cat. Journal of Comparative Neurology, 1994, 340, 207-232.	1.6	27
20	Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary) Tj ETQq0 0 0 rg	gBT /Overlo	ock 10 Tf 50 7
21	Quantitative ultrastructure of synapses on functionally identified primary afferent neurons in the cat trigeminal mesencephalic nucleus. Experimental Brain Research, 2001, 137, 150-162.	1.5	21
22	Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat. Brain Research, 2010, 1346, 69-82.	2.2	21
23	Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. Neuroscience, 2010, 169, 1739-1757.	2.3	21
24	Distribution of premotoneurons for jaw-closing and jaw-opening motor nucleus receiving contacts from axon terminals of primary somatosensory cortical neurons in rats. Brain Research, 2009, 1275, 43-53.	2.2	20
25	Neural mechanism underlying hyperalgesic response to orofacial pain in Parkinson's disease model rats. Neuroscience Research, 2015, 96, 59-68.	1.9	19
26	Projection and synaptic connectivity of trigeminal mesencephalic nucleus neurons controlling jaw reflexes. Journal of Oral Science, 2017, 59, 177-182.	1.7	18
27	The somatotopic organization of trigeminal premotoneurons in the cat brainstem. Brain Research, 2007, 1149, 111-117.	2.2	15
28	Heterogeneous activity level of jaw-closing and -opening muscles and its association with arousal levels during sleep in the guinea pig. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R34-R42.	1.8	15
29	Revisiting the supratrigeminal nucleus in the rat. Neuroscience, 2016, 324, 307-320.	2.3	15
30	Morphological differences between fast and slowly adapting lingual afferent terminations in the principal and oral nuclei in the cat., 1998, 396, 64-83.		14
31	Ultrastructural analysis of glutamateâ€, GABAâ€, and glycineâ€mmunopositive boutons from supratrigeminal premotoneurons in the rat trigeminal motor nucleus. Journal of Neuroscience Research, 2009, 87, 1115-1122.	2.9	14
32	γâ€Aminobutyric acid― glycine― and glutamate―mmunopositive boutons on mesencephalic trigeminal neurons that innervate jawâ€closing muscle spindles in the rat: Ultrastructure and development. Journal of Comparative Neurology, 2012, 520, 3414-3427.	1.6	14
33	Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience, 2017, 365, 158-178.	2.3	14
34	Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Structure and Function, 2020, 225, 2177-2192.	2.3	13
35	Quantitative ultrastructure of slowly adapting lingual afferent terminals in the principal and oral nuclei in the cat. Synapse, 2001, 41, 96-111.	1.2	12
36	Orofacial proprioceptive thalamus of the rat. Brain Structure and Function, 2017, 222, 2655-2669.	2.3	12

#	Article	IF	CITATIONS
37	Bilateral projection of functionally characterized trigeminal oralis neurons to trigeminal motoneurons in cats. Brain Research, 2005, 1036, 208-212.	2.2	11
38	Cortical and Subcortical Projections from Granular Insular Cortex Receiving Orofacial Proprioception. Neuroscience, 2018, 388, 317-329.	2.3	11
39	Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. IScience, 2022, 25, 103601.	4.1	11
40	Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Research, 2013, 1540, 48-63.	2.2	10
41	Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets. Cell and Tissue Research, 2015, 360, 347-362.	2.9	10
42	Ultrastructural Basis for Craniofacial Sensory Processing in The Brainstem. International Review of Neurobiology, 2011, 97, 99-141.	2.0	9
43	Morphological foundations of pain processing in dental pulp. Journal of Oral Science, 2020, 62, 126-130.	1.7	9
44	Jaw movement-related primary somatosensory cortical area in the rat. Neuroscience, 2015, 284, 55-64.	2.3	8
45	Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Structure and Function, 2022, 227, 111-129.	2.3	8
46	Ultrastructure of jaw muscle spindle afferents within the rat trigeminal mesencephalic nucleus. NeuroReport, 2005, 16, 1561-1564.	1.2	7
47	Electrophysiological and morphological properties of rat supratrigeminal premotor neurons targeting the trigeminal motor nucleus. Journal of Neurophysiology, 2014, 111, 1770-1782.	1.8	7
48	Anatomical organization of descending cortical projections orchestrating the patterns of cortically induced rhythmical jaw muscle activity in guinea pigs. Neuroscience Research, 2015, 99, 34-45.	1.9	7
49	Direct projection from the lateral habenula to the trigeminal mesencephalic nucleus in rats. Brain Research, 2016, 1630, 183-197.	2.2	7
50	Oral splint ameliorates tic symptoms in patients with tourette syndrome. Movement Disorders, 2019, 34, 1577-1578.	3.9	7
51	Scattered podosomes and podosomes associated with the sealing zone architecture in cultured osteoclasts revealed by cell shearing, quick freezing, and platinumâ€replica electron microscopy. Cytoskeleton, 2019, 76, 303-321.	2.0	7
52	Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Research, 2020, 1739, 146830.	2,2	7
53	Quantitative analysis of the dendritic architectures of single jaw-closing and jaw-opening motoneurons in cats. Experimental Brain Research, 2003, 150, 265-275.	1.5	6
54	Comparison of rhythmic masticatory muscle activity during nonâ€rapid eye movement sleep in guinea pigs and humans. Journal of Sleep Research, 2018, 27, e12608.	3.2	6

#	Article	IF	CITATIONS
55	Association between changes in cortical and jaw motor activities during sleep. Journal of Oral Biosciences, 2012, 54, 5-10.	2.2	5
56	Transcortical descending pathways through granular insular cortex conveying orofacial proprioception. Brain Research, 2018, 1687, 11-19.	2.2	5
57	Development of \hat{l}^3 -aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on the rat genioglossal motoneurons. Brain Structure and Function, 2021, 226, 889-900.	2.3	5
58	Surface distribution of heterogenous clathrin assemblies in resorbing osteoclasts. Experimental Cell Research, 2021, 399, 112433.	2.6	5
59	Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus. Neuroscience, 2017, 358, 211-226.	2.3	4
60	The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats. Cerebellum, 2023, 22, 663-679.	2.5	4
61	The role of basic fibroblast growth factor to enhance fetal intestinal mucosal cell regeneration in vivo. Pediatric Surgery International, 2009, 25, 691-695.	1.4	3
62	Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. Journal of Comparative Neurology, 2000, 426, 13-30.	1.6	3
63	Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Structure and Function, 2021, 226, 1115-1133.	2.3	2
64	Changes in cortical, cardiac, and respiratory activities in relation to spontaneous rhythmic jaw movements in ketamineâ€anesthetized guinea pigs. European Journal of Oral Sciences, 2021, , .	1.5	1
65	Quantitative analysis of the dendritic architectures of cat hypoglossal motoneurons stained intracellularly with horseradish peroxidase. Journal of Comparative Neurology, 1999, 405, 345.	1.6	1
66	By what neuronal mechanisms do emotions affect mastication?. The Journal of Japanese Society of Stomatognathic Function, 2016, 22, 142-143.	0.0	0