
Philippe Maitre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligation Motifs in Zinc-Bound Sulfonamide Drugs Assayed by IR Ion Spectroscopy. Molecules, 2022, 27, 3144.	3.8	0
2	Gas-Phase Dissociation Chemistry of Deprotonated RGD. Journal of the American Society for Mass Spectrometry, 2021, 32, 55-63.	2.8	4
3	Binding Motifs in the Naked Complexes of Target Amino Acids with an Excerpt of Antitumor Active Biomolecule: An Ion Vibrational Spectroscopy Assay. Chemistry - A European Journal, 2021, 27, 2348-2360.	3.3	3
4	Infrared Multiple Photon Dissociation Spectroscopy of Protonated Cyameluric Acid. Journal of Physical Chemistry A, 2021, 125, 607-614.	2.5	0
5	Structural Insights from Tandem Mass Spectrometry, Ion Mobility-Mass Spectrometry, and Infrared/Ultraviolet Spectroscopy on Sphingonodin I: Lasso vs Branched-Cyclic Topoisomers. Journal of the American Society for Mass Spectrometry, 2021, 32, 1096-1104.	2.8	4
6	Guanine Tautomerism in Ionic Complexes with Ag ⁺ Investigated by IRMPD Spectroscopy and Mass Spectrometry. Journal of Physical Chemistry B, 2021, 125, 7137-7146.	2.6	2
7	From Preassociation to Chelation: A Survey of Cisplatin Interaction with Methionine at Molecular Level by IR Ion Spectroscopy and Computations. Journal of the American Society for Mass Spectrometry, 2021, 32, 2206-2217.	2.8	7
8	Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chemical Reviews, 2020, 120, 3261-3295.	47.7	51
9	On the Interaction between Deprotonated Cytosine [C (â~H)] â~ and Ba 2+ : Infrared Multiphoton Spectroscopy and Dynamics. ChemPhysChem, 2020, 21, 2571-2582.	2.1	5
10	Identification and quantification of amino acids and related compounds based on Differential Mobility Spectrometry. Analyst, The, 2020, 145, 4889-4900.	3.5	5
11	Gas phase dynamics, conformational transitions and spectroscopy of charged saccharides: the oxocarbenium ion, protonated anhydrogalactose and protonated methyl galactopyranoside. Physical Chemistry Chemical Physics, 2020, 22, 4144-4157.	2.8	8
12	Structure of Proton-Bound Methionine and Tryptophan Dimers in the Gas Phase Investigated with IRMPD Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2020, 124, 2408-2415.	2.5	11
13	IRMPD Spectra of Protonated Hydroxybenzaldehydes: Evidence of Torsional Barriers in Carboxonium Ions. ChemPhysChem, 2020, 21, 749-761.	2.1	1
14	Structural and Energetic Effects of O2′-Ribose Methylation of Protonated Pyrimidine Nucleosides. Journal of the American Society for Mass Spectrometry, 2019, 30, 2318-2334.	2.8	5
15	Reactions of Thiiranium and Sulfonium Ions with Alkenes in the Gas Phase. Journal of Organic Chemistry, 2019, 84, 10076-10087.	3.2	9
16	Evaluation of the Katsuki–Sharpless Epoxidation Precatalysts by ESI-FTMS, CID, and IRMPD Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 1022-1029.	2.5	11
17	Probing the gas-phase structure of charge-tagged intermediates of a proline catalyzed aldol reaction – vibrational spectroscopy distinguishes oxazolidinone from enamine species. Physical Chemistry Chemical Physics, 2019, 21, 2578-2586.	2.8	0
18	Infrared multiple photon dissociation action spectroscopy of protonated glycine, histidine, lysine, and arginine complexed with 18-crown-6 ether. Physical Chemistry Chemical Physics, 2019, 21, 12625-12639.	2.8	9

#	Article	IF	CITATIONS
19	Infrared isomer-specific fragmentation for the identification of aminobutyric acid isomers separated by differential mobility spectrometry. International Journal of Mass Spectrometry, 2019, 443, 16-21.	1.5	5
20	Vibrational signatures of curcumin's chelation in copper(II) complexes: An appraisal by IRMPD spectroscopy. Journal of Chemical Physics, 2019, 150, 165101.	3.0	8
21	The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. European Journal of Organic Chemistry, 2019, 2019, 3560-3566.	2.4	12
22	Short-lived intermediates (encounter complexes) in cisplatin ligand exchange elucidated by infrared ion spectroscopy. International Journal of Mass Spectrometry, 2019, 435, 7-17.	1.5	20
23	Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers. Journal of the American Society for Mass Spectrometry, 2018, 29, 752-760.	2.8	17
24	Insights from ion mobility-mass spectrometry, infrared spectroscopy, and molecular dynamics simulations on nicotinamide adenine dinucleotide structural dynamics: NAD ⁺ <i>vs.</i> NADH. Physical Chemistry Chemical Physics, 2018, 20, 7043-7052.	2.8	14
25	Ligand-induced decarbonylation in diphosphine-ligated palladium acetates [CH ₃ CO ₂ Pd((PR ₂) ₂ CH ₂)] ⁺ (R) Tj	ET4Qeq1 I	1 0.71 8 4314 r <mark>g</mark> f
26	Deprotonated carbohydrate anion fragmentation chemistry: structural evidence from tandem mass spectrometry, infra-red spectroscopy, and theory. Physical Chemistry Chemical Physics, 2018, 20, 27897-27909.	2.8	19
27	Sequence Ion Structures and Dissociation Chemistry of Deprotonated Sucrose Anions. Journal of the American Society for Mass Spectrometry, 2018, 29, 2380-2393.	2.8	15
28	Evaluation of Ca ²⁺ Binding Sites in Tacrolimus by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 9860-9868.	2.6	6
29	Structural and Energetic Effects of O2â€2-Ribose Methylation of Protonated Purine Nucleosides. Journal of Physical Chemistry B, 2018, 122, 9147-9160.	2.6	16
30	Mimicking the Regulation Step of Feâ€Monooxygenases: Allosteric Modulation of Fe ^{IV} â€Oxo Formation by Guest Binding in a Dinuclear Zn ^{II} –Fe ^{II} Calix[6]areneâ€Based Funnel Complex. Chemistry - A European Journal, 2017, 23, 2894-2906.	3.3	4
31	Seleniranium Ions Undergo π-Ligand Exchange via an Associative Mechanism in the Gas Phase. Journal of Organic Chemistry, 2017, 82, 6289-6297.	3.2	10
32	Cytosine Radical Cations: A Gasâ€Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion–Molecule Reactions, and Theoretical Calculations. ChemPhysChem, 2017, 18, 1293-1301.	2.1	29
33	Fingerprints of Both Watson–Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H ⁺ Pair. Journal of Physical Chemistry Letters, 2017, 8, 5501-5506.	4.6	22
34	Pterin determination in cerebrospinal fluid: state of the art. Pteridines, 2017, 28, 83-89.	0.5	11
35	Cisplatin and transplatin interaction with methionine: bonding motifs assayed by vibrational spectroscopy in the isolated ionic complexes. Physical Chemistry Chemical Physics, 2017, 19, 26697-26707.	2.8	26
36	Watson–Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA. Journal of Physical Chemistry Letters, 2017, 8, 3159-3165.	4.6	22

#	Article	IF	CITATIONS
37	Cysteine Radical/Metal Ion Adducts: A Gasâ€Phase Structural Elucidation and Reactivity Study. ChemPlusChem, 2016, 81, 444-452.	2.8	8
38	Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid. Nature Communications, 2016, 7, 11746.	12.8	66
39	IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers. Journal of Physical Chemistry A, 2016, 120, 3810-3816.	2.5	15
40	Differentiation of Cefaclor and its delta-3 isomer by electrospray mass spectrometry, infrared multiple photon dissociation spectroscopy and theoretical calculations. Journal of Mass Spectrometry, 2015, 50, 265-269.	1.6	3
41	On the Ag ⁺ –cytosine interaction: the effect of microhydration probed by IR optical spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 25915-25924.	2.8	15
42	Rearrangement chemistry of a ions probed by IR spectroscopy. International Journal of Mass Spectrometry, 2015, 377, 172-178.	1.5	21
43	Probing Mobility-Selected Saccharide Isomers: Selective Ion–Molecule Reactions and Wavelength-Specific IR Activation. Journal of Physical Chemistry A, 2015, 119, 6057-6064.	2.5	77
44	Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation. Physical Chemistry Chemical Physics, 2015, 17, 25837-25844.	2.8	15
45	Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries. Nature Communications, 2015, 6, 6950.	12.8	37
46	Copper mediated decyano decarboxylative coupling of cyanoacetate ligands: Pesci versus Lewis acid mechanism. Dalton Transactions, 2015, 44, 9230-9240.	3.3	5
47	Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species. Journal of Physical Chemistry Letters, 2015, 6, 1605-1610.	4.6	17
48	Specific rearrangement reactions of acetylated lysine containing peptide <i>b</i> _n (<i>n</i> = 4–7) ion series. Journal of Mass Spectrometry, 2014, 49, 1290-1297.	1.6	1
49	Zundel-Type H-Bonding in Biomolecular Ions. Journal of the American Society for Mass Spectrometry, 2014, 25, 1511-1514.	2.8	5
50	Kinetic control in the CID-induced elimination of H ₃ PO ₄ from phosphorylated serine probed using IRMPD spectroscopy. Chemical Communications, 2014, 50, 3845-3848.	4.1	30
51	Gas Phase Structure of Metal Mediated (Cytosine) ₂ Ag ⁺ Mimics the Hemiprotonated (Cytosine) ₂ H ⁺ Dimer in <i>i</i> Motif Folding. Journal of Physical Chemistry A, 2014, 118, 3804-3809.	2.5	26
52	Gas Phase Structure and Reactivity of Doubly Charged Microhydrated Calcium(II)–Catechol Complexes Probed by Infrared Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 4942-4954.	2.5	13
53	Halide adducts of 1,3,5-trinitrobenzene: Vibrational signatures and role of anion–π interactions. International Journal of Mass Spectrometry, 2013, 354-355, 62-69.	1.5	10
54	Communication: Infrared spectroscopy of protonated allyl-trimethylsilane: Evidence for the β-silyl effect. Journal of Chemical Physics, 2013, 139, 071102.	3.0	6

#	Article	IF	CITATIONS
55	Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3′,5′-adenosine monophosphate. RSC Advances, 2013, 3, 12711.	3.6	25
56	Gas-phase infrared spectrum and acidity of the radical cation of 9-methylguanine. Chemical Communications, 2013, 49, 7343.	4.1	27
57	IR Spectroscopy of b ₄ Fragment Ions of Protonated Pentapeptides in the X–H (X = C, N, O) Region. Journal of Physical Chemistry A, 2013, 117, 2508-2516.	2.5	16
58	IR Signature of NO Binding to a Ferrous Heme Center. Journal of Physical Chemistry Letters, 2013, 4, 2414-2417.	4.6	24
59	Cyanide–Arene Meisenheimer Complex Generated in Electrospray Ionization Mass Spectrometry Using Acetonitrile as a Solvent. Journal of the American Society for Mass Spectrometry, 2013, 24, 1603-1607.	2.8	13
60	Binding motifs of silver in prion octarepeat model peptides: a joint ion mobility, IR and UV spectroscopies, and theoretical approach. Physical Chemistry Chemical Physics, 2012, 14, 11433.	2.8	28
61	S-nitrosation of cysteine as evidenced by IRMPD spectroscopy. International Journal of Mass Spectrometry, 2012, 330-332, 160-167.	1.5	31
62	Mechanistic Investigation of the Generation of a Palladium(0) Catalyst from a Palladium(II) Allyl Complex: A Combined Experimental and DFT Study. Organometallics, 2012, 31, 5975-5978.	2.3	30
63	H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes. Physical Chemistry Chemical Physics, 2012, 14, 8945.	2.8	8
64	Benzylium versus Tropylium Ion Dichotomy: Vibrational Spectroscopy of Gaseous C ₈ H ₉ ⁺ lons. Angewandte Chemie - International Edition, 2012, 51, 4947-4949.	13.8	38
65	Rearrangement Pathways of the a 4 Ion of Protonated YGGFL Characterized by IR Spectroscopy and Modeling. Journal of the American Society for Mass Spectrometry, 2012, 23, 664-675.	2.8	29
66	IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion. Chemical Physics, 2012, 398, 118-123.	1.9	9
67	Tyrosine side-chain catalyzed proton transfer in the YG a2 ion revealed by theory and IR spectroscopy in the â€~fingerprint' and XH (X=C, N, O) stretching regions. International Journal of Mass Spectrometry, 2012, 316-318, 227-234.	1.5	12
68	Direct Evidence for Tautomerization of the Uracil Moiety within the Pb ²⁺ /Uridine-5′-monophosphate Complex: A Combined Tandem Mass Spectrometry and IRMPD study. Inorganic Chemistry, 2011, 50, 7769-7778.	4.0	35
69	Naked Five-Coordinate FellI(NO) Porphyrin Complexes: Vibrational and Reactivity Features. Inorganic Chemistry, 2011, 50, 4445-4452.	4.0	47
70	Structure of singly hydrated, protonated phospho-tyrosine. International Journal of Mass Spectrometry, 2011, 308, 338-347.	1.5	22
71	Diagnosing the Protonation Site of <i>b</i> _{<i>2</i>} Peptide Fragment Ions using IRMPD in the X–H (X = O, N, and C) Stretching Region. Journal of the American Society for Mass Spectrometry, 2011, 22, 1645-50.	2.8	40
72	Spectroscopic Signatures of Peptides Containing Tryptophan Radical Cations. Angewandte Chemie - International Edition, 2011, 50, 11430-11432.	13.8	22

#	Article	IF	CITATIONS
73	Structure of Pb2+/dCMP and Pb2+/CMP complexes as characterized by tandem mass spectrometry and IRMPD spectroscopy. International Journal of Mass Spectrometry, 2011, 304, 154-164.	1.5	23
74	Gas phase structure of micro-hydrated [Mn(ClO ₄)] ⁺ and [Mn ₂ (ClO ₄) ₃] ⁺ ions probed by infrared spectroscopy. Journal of the American Society for Mass Spectrometry, 2010, 21, 758-772.	2.8	37
75	Protonated Sulfuric Acid: Vibrational Signatures of the Naked Ion in the Near- and Mid-IR. Journal of Physical Chemistry Letters, 2010, 1, 1721-1724.	4.6	12
76	Cyclization and Rearrangement Reactions ofanFragment Ions of Protonated Peptides. Journal of the American Chemical Society, 2010, 132, 14766-14779.	13.7	84
77	Structure of Zirconocene Complexes Relevant for Olefin Catalysis: Infrared Fingerprint of the Zr(C ₅ H ₅) ₂ (OH)(CH ₃ CN) ⁺ Cation in the Gas Phase. Journal of Physical Chemistry A, 2010, 114, 2073-2079.	2.5	17
78	Chiral Recognition in Cinchona Alkaloid Protonated Dimers: Mass Spectrometry and UV Photodissociation Studies. Journal of Physical Chemistry A, 2010, 114, 3306-3312.	2.5	39
79	Structure and Infrared Spectrum of the Ag ⁺ â^`Phenol Ionic Complex. Journal of Physical Chemistry A, 2010, 114, 11053-11059.	2.5	74
80	Cysteine radical cation: A distonic structure probed by gas phase IR spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 9794.	2.8	55
81	IRMPD spectroscopy of protonated S-nitrosocaptopril, a biologically active, synthetic amino acid. Physical Chemistry Chemical Physics, 2010, 12, 13455.	2.8	20
82	Molecular Complexes of Simple Anions with Electronâ€Deficient Arenes: Spectroscopic Evidence for Two Types of Structural Motifs for Anion–Arene Interactions. Chemistry - A European Journal, 2009, 15, 8185-8195.	3.3	44
83	Midâ€IR Spectroscopy and Structural Features of Protonated Carbonic Acid in the Gas Phase. ChemPhysChem, 2009, 10, 520-522.	2.1	10
84	Infrared Spectroscopy of Fragments from Doubly Protonated Tryptic Peptides. ChemPhysChem, 2009, 10, 883-885.	2.1	74
85	Structural Characterization by IRMPD Spectroscopy and DFT Calculations of Deprotonated Phosphorylated Amino Acids in the Gas Phase. ChemPhysChem, 2009, 10, 1630-1641.	2.1	41
86	Roomâ€īemperature Infrared Spectroscopy Combined with Mass Spectrometry Distinguishes Gasâ€Phase Protein Isomers. Angewandte Chemie - International Edition, 2009, 48, 8340-8342.	13.8	31
87	Tautomerism of cytosine probed by gas phase IR spectroscopy. International Journal of Mass Spectrometry, 2009, 283, 214-221.	1.5	47
88	Infrared Spectroscopy of Fragments of Protonated Peptides: Direct Evidence for Macrocyclic Structures of <i>b</i> ₅ Ions. Journal of the American Chemical Society, 2009, 131, 11503-11508.	13.7	92
89	The Effect of a Fourth Binding Site on the Stabilization of Cationic SPS Pincer Palladium Complexes: Experimental, DFT, and Mass Spectrometric Studies. Organometallics, 2009, 28, 2020-2027.	2.3	11
90	Molecular Dynamics and Room Temperature Vibrational Properties of Deprotonated Phosphorylated Serine. Journal of Chemical Theory and Computation, 2009, 5, 2388-2400.	5.3	35

#	Article	IF	CITATIONS
91	Direct Probe of NO Vibration in the Naked Ferric Heme Nitrosyl Complex. ChemPhysChem, 2008, 9, 826-828.	2.1	33
92	Infrared spectroscopy of isolated nucleotides. 1. The cyclic 3′,5′-adenosine monophosphate anion. International Journal of Mass Spectrometry, 2008, 270, 111-117.	1.5	43
93	Structure of Electron-Capture Dissociation Fragments from Charge-Tagged Peptides Probed by Tunable Infrared Multiple Photon Dissociation. Journal of the American Chemical Society, 2008, 130, 14916-14917.	13.7	59
94	Tautomerism of Uracil Probed via Infrared Spectroscopy of Singly Hydrated Protonated Uracil. Journal of Physical Chemistry A, 2008, 112, 12393-12400.	2.5	96
95	Vibrational Signatures of Protonated, Phosphorylated Amino Acids in the Gas Phase. Journal of the American Chemical Society, 2008, 130, 3359-3370.	13.7	104
96	Structural characterization under tandem mass spectrometry conditions: infrared spectroscopy of gas phase ions. Physica Scripta, 2008, 78, 058111.	2.5	15
97	Gas-Phase Structure of a ï€-Allylâ^'Palladium Complex:  Efficient Infrared Spectroscopy in a 7 T Fourier Transform Mass Spectrometer. Journal of Physical Chemistry A, 2007, 111, 13415-13424.	2.5	152
98	Fingerprint Vibrational Spectra of Protonated Methyl Esters of Amino Acids in the Gas Phase. Journal of the American Chemical Society, 2007, 129, 2829-2840.	13.7	81
99	Meisenheimer Complexes Positively Characterized as Stable Intermediates in the Gas Phase. Angewandte Chemie - International Edition, 2007, 46, 1995-1998.	13.8	68
100	Infrared Spectra of Isolated Protonated Polycyclic Aromatic Hydrocarbons: Protonated Naphthalene. Angewandte Chemie - International Edition, 2007, 46, 6714-6716.	13.8	86
101	Micro-Hydration of the MgNO3+ Cation in the Gas Phase. ChemPhysChem, 2007, 8, 1629-1639.	2.1	70
102	Infrared Spectra of Protonated Uracil, Thymine and Cytosine. ChemPhysChem, 2007, 8, 2235-2244.	2.1	128
103	Infrared spectroscopy of organometallic ions in the gas phase: From model to real world complexes. Mass Spectrometry Reviews, 2007, 26, 583-605.	5.4	278
104	Protonation of heterocyclic aromatic molecules: IR signature of the protonation site of furan and pyrrole. International Journal of Mass Spectrometry, 2007, 267, 43-53.	1.5	43
105	Gas phase infrared multiple-photon dissociation spectra of methanol, ethanol and propanol proton-bound dimers, protonated propanol and the propanol/water proton-bound dimer. Physical Chemistry Chemical Physics, 2006, 8, 955.	2.8	80
106	Experimental infrared spectra of Clâ^'(ROH) (R = H, CH3, CH3CH2) complexes in the gas-phase. Physical Chemistry Chemical Physics, 2006, 8, 2483-2490.	2.8	15
107	IR Spectroscopic Features of Gaseous C7H7O+Ions:Â Benzylium versus Tropylium Ion Structures. Journal of Physical Chemistry A, 2006, 110, 9352-9360.	2.5	50
108	IR spectroscopy of protonated toluene: Probing ring hydrogen shifts in gaseous arenium ions. International Journal of Mass Spectrometry, 2006, 249-250, 149-154.	1.5	49

#	Article	IF	CITATIONS
109	Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap. International Journal of Mass Spectrometry, 2006, 249-250, 14-20.	1.5	123
110	Ï€-Complex Structure of Gaseous Benzeneâ^'NO Cations Assayed by IR Multiple Photon Dissociation Spectroscopy. Journal of the American Chemical Society, 2006, 128, 12553-12561.	13.7	55
111	Infrared multiphoton dissociation spectroscopy of protonated N-acetyl-alanine and alanyl-histidine. International Journal of Mass Spectrometry, 2005, 243, 105-113.	1.5	69
112	Infrared Spectroscopy of Protonated Phenylsilane in the Gas Phase. ChemPhysChem, 2005, 6, 437-440.	2.1	32
113	Protonation Sites of Isolated Fluorobenzene Revealed by IR Spectroscopy in the Fingerprint Range. Journal of Physical Chemistry A, 2005, 109, 7881-7887.	2.5	57
114	Infrared spectra of homogeneous and heterogeneous proton-bound dimers in the gas phase. Physical Chemistry Chemical Physics, 2005, 7, 2747.	2.8	77
115	Infrared Absorption Features of Gaseous Isopropyl Carbocations. ChemPhysChem, 2004, 5, 1679-1685.	2.1	21
116	Investigation of the protonation site in the dialanine peptide by infrared multiphoton dissociation spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 2659-2663.	2.8	85
117	Infrared Multiphoton Dissociation Spectroscopy of Gas-Phase Mass-Selected Hydrocarbonâ^'Fe+ Complexes. Journal of the American Chemical Society, 2004, 126, 11666-11674.	13.7	47
118	Reductive Nitrile Coupling in Niobiumâ^'Acetonitrile Complexes Probed by Free Electron Laser IR Multiphoton Dissociation Spectroscopy. Journal of Physical Chemistry A, 2004, 108, 3350-3355.	2.5	47
119	Infrared Spectrum of the Protonated Water Dimer in the Gas Phase. Journal of Physical Chemistry A, 2004, 108, 9008-9010.	2.5	169
120	Vibrational Signature of Charge Solvation vs Salt Bridge Isomers of Sodiated Amino Acids in the Gas Phase. Journal of the American Chemical Society, 2004, 126, 1836-1842.	13.7	260
121	Infrared Fingerprint of Protonated Benzene in the Gas Phase. Angewandte Chemie, 2003, 115, 2103-2105.	2.0	15
122	Infrared Fingerprint of Protonated Benzene in the Gas Phase. Angewandte Chemie - International Edition, 2003, 42, 2057-2059.	13.8	87
123	Accurate measurement of the relative bond energies of CO and H2O ligands in Fe+mono- and bis-ligated complexes. Rapid Communications in Mass Spectrometry, 2003, 17, 351-357.	1.5	13
124	Ultrasensitive spectroscopy of ionic reactive intermediates in the gas phase performed with the first coupling of an IR FEL with an FTICR-MS. , 2003, , 541-546.		2
125	Gas Phase Infrared Spectroscopy of Selectively Prepared Ions. Physical Review Letters, 2002, 89, 273002.	7.8	285
126	Infrared Spectra of Gas-Phase V+â^'(Benzene) and V+â^'(Benzene)2 Complexes. Journal of the American Chemical Society, 2002, 124, 1562-1563.	13.7	104

#	Article	IF	CITATIONS
127	o-,m-, andp-Diphosphabenzenes and Their P2(Câ^'H)4Valence Isomers. An Ab Initio Theoretical Study. Journal of the American Chemical Society, 1999, 121, 4215-4221.	13.7	26
128	Origin of Bonding Interactions in Cu+(H2)n Clusters:  An Experimental and Theoretical Investigation. Journal of the American Chemical Society, 1998, 120, 13494-13502.	13.7	81
129	Theoretical Study of Tungsten Carbonyl Complexes (n= 1â^'6):Â Structures, Binding Energies, and Implications for Gas Phase Reactivities. Journal of Physical Chemistry A, 1997, 101, 3966-3976.	2.5	19
130	Binding energies of Ti+(H2)1–6 clusters: Theory and experiment. Journal of Chemical Physics, 1997, 106, 10153-10167.	3.0	48
131	Valence Bond Analysis of the Lone Pair Bond Weakening Effect for the Xâ^'H Bonds in the Series XHn= CH4, NH3, OH2, FH. The Journal of Physical Chemistry, 1996, 100, 6463-6468.	2.9	28
132	Comment on "the origin of anomalous bond dissociation energies of V+(H2)n clusters― Chemical Physics Letters, 1995, 242, 244-248.	2.6	6
133	Structure of V(H2)n+ Clusters for n = 1-6. The Journal of Physical Chemistry, 1995, 99, 6836-6841.	2.9	34
134	Structure of Co(H2)n+ Clusters, for n = 1-6. The Journal of Physical Chemistry, 1995, 99, 3444-3447.	2.9	46
135	The structures of small iron-carbon cluster anions. Linear to planar to three-dimensional. Chemical Physics Letters, 1994, 227, 601-608.	2.6	59
136	Theoretical study of the low-lying states of MgN2+. Chemical Physics Letters, 1994, 225, 467-472.	2.6	21
137	Insertion of Sc+ into H2: The First Example of Cluster-Mediated .sigmaBond Activation by a Transition Metal Center. Journal of the American Chemical Society, 1994, 116, 9710-9718.	13.7	82
138	Theoretical study of the hydrogen-metal complex (H2-ML+) binding energies. The Journal of Physical Chemistry, 1993, 97, 11912-11920.	2.9	40
139	The charge-shift bonding concept. Electron-pair bonds with very large ionic-covalent resonance energies. Journal of the American Chemical Society, 1992, 114, 7861-7866.	13.7	155
140	Analysis of correlation consistent wavefunctions: H3Xî—,H bond energies (X=C, Si and Ge). Chemical Physics, 1992, 168, 237-247.	1.9	7
141	Covalent, ionic and resonating single bonds. Computational and Theoretical Chemistry, 1991, 229, 163-188.	1.5	78
142	Correlation-consistent valence bond method with purely local orbitals: application to hydrogen, lithium dimer, hydrogen fluoride, fluorine and collinear hydrogen (H3) and lithium (Li3). The Journal of Physical Chemistry, 1990, 94, 4082-4089.	2.9	21
143	Quantitative valence bond computations of curve-crossing diagrams for model atom exchange reactions. The Journal of Physical Chemistry, 1990, 94, 4089-4093.	2.9	47
144	Is the hypervalent radical SiH5 a stable species? An ab initio study. Chemical Physics Letters, 1990, 166, 49-53.	2.6	15

#	Article	IF	CITATIONS
145	Hypercoordination in SiH5- and SiH5.bul An electron-count dependence. Inorganic Chemistry, 1990, 29, 3047-3048.	4.0	17