Marcos FernÃ;ndez-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174880/publications.pdf

Version: 2024-02-01

325 papers

23,601 citations

80 h-index 9861

342 all docs 342 docs citations

times ranked

342

23036 citing authors

g-index

#	Article	IF	Citations
1	Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2012, 112, 1555-1614.	47.7	2,107
2	Nanostructured Oxides in Chemistry:  Characterization and Properties. Chemical Reviews, 2004, 104, 4063-4104.	47.7	909
3	Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 2011, 40, 5266.	38.1	739
4	Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2009, 2, 18-45.	6.8	702
5	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 2016, 9, 3314-3347.	30.8	556
6	Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 2014, 43, 765-778.	38.1	539
7	Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45, 83-117.	38.1	421
8	In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cuâ^'CeO2Catalysts:Â Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. Journal of Physical Chemistry B, 2006, 110, 428-434.	2.6	415
9	Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. Journal of Catalysis, 2000, 195, 207-216.	6.2	357
10	Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports, 2014, 4, 4134.	3.3	335
11	Selective CO Oxidation in Excess H ₂ over Copperâ^'Ceria Catalysts:  Identification of Active Entities/Species. Journal of the American Chemical Society, 2007, 129, 12064-12065.	13.7	305
12	Structureâ-'Activity Relationship in Nanostructured Copperâ-'Ceria-Based Preferential CO Oxidation Catalysts. Journal of Physical Chemistry C, 2007, 111, 11026-11038.	3.1	296
13	Inverse CeO ₂ /CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream. Journal of the American Chemical Society, 2010, 132, 34-35.	13.7	278
14	Unusual Physical and Chemical Properties of Cu in Ce1-xCuxO2Oxides. Journal of Physical Chemistry B, 2005, 109, 19595-19603.	2.6	262
15	Dynamic inÂsitu observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nature Materials, 2007, 6, 528-532.	27. 5	262
16	Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied Catalysis B: Environmental, 2007, 72, 11-17.	20.2	254
17	Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production. Molecular Catalysis, 2020, 488, 110902.	2.0	245
18	Spectroscopic Study of a Cu/CeO2Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen. Journal of Catalysis, 1999, 182, 367-377.	6.2	237

#	Article	IF	Citations
19	Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy and Environmental Science, 2010, 3, 1706.	30.8	224
20	Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications, 2001, , 2718-2719.	4.1	219
21	Structural and Redox Properties of Ceria in Alumina-Supported Ceria Catalyst Supports. Journal of Physical Chemistry B, 2000, 104, 4038-4046.	2.6	204
22	Nanosize Ti–W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-Type Excitation. Journal of Catalysis, 2002, 212, 1-9.	6.2	204
23	Structural Characteristics and Redox Behavior of CeO2–ZrO2/Al2O3 Supports. Journal of Catalysis, 2000, 194, 385-392.	6.2	202
24	Properties of CeO2and Ce1-xZrxO2Nanoparticles:Â X-ray Absorption Near-Edge Spectroscopy, Density Functional, and Time-Resolved X-ray Diffraction Studies. Journal of Physical Chemistry B, 2003, 107, 3535-3543.	2.6	199
25	Characterization of High Surface Area Zrâ^'Ce (1:1) Mixed Oxide Prepared by a Microemulsion Method. Langmuir, 1999, 15, 4796-4802.	3.5	194
26	Cationic (V, Mo, Nb, W) doping of TiO2–anatase: A real alternative for visible light-driven photocatalysts. Catalysis Today, 2009, 143, 286-292.	4.4	188
27	Role of Interface Contact in CeO ₂ â€"TiO ₂ Photocatalytic Composite Materials. ACS Catalysis, 2014, 4, 63-72.	11.2	178
28	Interfacial Redox Processes under CO/O2in a Nanoceria-Supported Copper Oxide Catalyst. Journal of Physical Chemistry B, 2004, 108, 17983-17991.	2.6	155
29	Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999, 187, 474-485.	6.2	151
30	Unusual Physical and Chemical Properties of Ni in Ce _{1â^'<i>x</i>xxxxxxx<}	3.1	151
31	Nitrogen-containing TiO2 photocatalysts. Applied Catalysis B: Environmental, 2006, 65, 309-314.	20.2	146
32	Nature of the vanadia?ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004, 225, 240-248.	6.2	143
33	Interface Effects in Sunlight-Driven Ag/g-C ₃ N ₄ Composite Catalysts: Study of the Toluene Photodegradation Quantum Efficiency. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2617-2627.	8.0	140
34	New Pd/CexZr1â^'xO2/Al2O3 three-way catalysts prepared by microemulsion. Applied Catalysis B: Environmental, 2001, 31, 39-50.	20.2	131
35	Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 9530-9544.	6.7	130
36	EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Applied Catalysis B: Environmental, 2004, 50, 167-175.	20.2	128

#	Article	IF	CITATIONS
37	Disinfection capability of Ag/g-C 3 N 4 composite photocatalysts under UV and visible light illumination. Applied Catalysis B: Environmental, 2016, 183, 86-95.	20.2	127
38	XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews - Science and Engineering, 2002, 44, 59-121.	12.9	126
39	High-Performance Dual-Action Polymerâ^'TiO ₂ Nanocomposite Films via Melting Processing. Nano Letters, 2007, 7, 2529-2534.	9.1	121
40	Study of the lean NOx reduction with C3H6 in the presence of water over silver/alumina catalysts prepared from inverse microemulsions. Applied Catalysis B: Environmental, 2000, 28, 29-41.	20.2	119
41	Redox-catalytic correlations in oxidised copper-ceria CO-PROX catalysts. Catalysis Today, 2009, 143, 211-217.	4.4	118
42	XANES-TPR Study of Cu-Pd Bimetallic Catalysts: Application of Factor Analysis. The Journal of Physical Chemistry, 1995, 99, 12565-12569.	2.9	116
43	Metal–promoter interface in Pd/(Ce,Zr)Ox/Al2O3 catalysts: effect of thermal aging. Journal of Catalysis, 2004, 221, 148-161.	6.2	116
44	Nanostructured Ti–M mixed-metal oxides: Toward a visible light-driven photocatalyst. Journal of Catalysis, 2008, 254, 272-284.	6.2	116
45	Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M=Zr, Tb) catalysts. Journal of Power Sources, 2005, 151, 32-42.	7.8	115
46	Thermoâ€Photocatalysis: Environmental and Energy Applications. ChemSusChem, 2019, 12, 2098-2116.	6.8	115
47	The behavior of mixed-metal oxides: Physical and chemical properties of bulk Ce1â^'xTbxO2 and nanoparticles of Ce1â^'xTbxOy. Journal of Chemical Physics, 2004, 121, 5434-5444.	3.0	113
48	New Pd/CexZr1â^'xO2/Al2O3 three-way catalysts prepared by microemulsion. Applied Catalysis B: Environmental, 2001, 31, 51-60.	20.2	112
49	The behavior of mixed-metal oxides: Structural and electronic properties of Ce1â^'xCaxO2 and Ce1â^'xCaxO2â^'x. Journal of Chemical Physics, 2003, 119, 5659-5669.	3.0	112
50	Hard X-ray photon-in photon-out spectroscopy. Catalysis Today, 2009, 145, 294-299.	4.4	112
51	Towards a Bio-Based Industry: Benign Catalytic Esterifications of Succinic Acid in the Presence of Water. Chemistry - A European Journal, 2007, 13, 6914-6919.	3.3	111
52	Selfâ€Sterilized EVOHâ€TiO ₂ Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 2008, 18, 1949-1960.	14.9	111
53	High Activity of Ce _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{2â^'<i>y</i>} for H ₂ Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metalâ€"Oxide Interactions. Angewandte Chemie - International Edition, 2010, 49, 9680-9684.	13.8	108
54	High-performance Er3+–TiO2 system: Dual up-conversion and electronic role of the lanthanide. Journal of Catalysis, 2013, 299, 298-306.	6.2	108

#	Article	IF	Citations
55	Comparative study on redox properties of nanosized CeO2 and CuO/CeO2 under CO/O2. Journal of Catalysis, 2006, 240, 1-7.	6.2	106
56	Anatase-TiO2Nanomaterials:  Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. Journal of Physical Chemistry C, 2007, 111, 674-682.	3.1	104
57	Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation. Applied Catalysis B: Environmental, 2008, 84, 87-93.	20.2	102
58	Alloy Formation and Stability in Pdâ^'Cu Bimetallic Catalysts. The Journal of Physical Chemistry, 1996, 100, 16247-16254.	2.9	100
59	Halloysite–TiO2 nanocomposites: Synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133, 416-422.	20.2	98
60	On modelling the interaction of CO on the MgO(100) surface. Surface Science, 1995, 327, 59-73.	1.9	96
61	Influence of Ceria on the Dispersion and Reduction/Oxidation Behaviour of Alumina-Supported Copper Catalysts. Journal of Catalysis, 1997, 172, 146-159.	6.2	96
62	Confinement effects in quasi-stoichiometric CeO2nanoparticles. Physical Chemistry Chemical Physics, 2004, 6, 3524-3529.	2.8	95
63	Selective Reduction of NOxwith Propene under Oxidative Conditions:Â Nature of the Active Sites on Copper-Based Catalysts. Journal of the American Chemical Society, 1997, 119, 2905-2914.	13.7	93
64	Effect of Thermal Sintering on Light-Off Performance of Pd/(Ce,Zr)Ox/Al2O3 Three-Way Catalysts: Model Gas and Engine Tests. Journal of Catalysis, 2001, 204, 238-248.	6.2	90
65	Nanostructured Tiâ^'W Mixed-Metal Oxides:  Structural and Electronic Properties. Journal of Physical Chemistry B, 2005, 109, 6075-6083.	2.6	90
66	Photocatalytic behaviour of Bi2MO6 polymetalates for rhodamine B degradation. Catalysis Today, 2009, 143, 274-281.	4.4	90
67	Combining Time-Resolved Hard X-ray Diffraction and Diffuse Reflectance Infrared Spectroscopy To Illuminate CO Dissociation and Transient Carbon Storage by Supported Pd Nanoparticles during CO/NO Cycling. Journal of the American Chemical Society, 2010, 132, 4540-4541.	13.7	89
68	Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chemistry, 2011, 13, 2750.	9.0	89
69	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	3.7	87
70	Continuous flow transformations of glycerol to valuable products: an overview. Sustainable Chemical Processes, 2014, 2, .	2.3	86
71	Nature and catalytic role of active silver species in the lean NOx reduction with C3H6 in the presence of water. Journal of Catalysis, 2003, 217, 310-323.	6.2	85
72	Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Applied Catalysis B: Environmental, 2018, 238, 434-443.	20.2	85

#	Article	IF	Citations
73	Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214, 261-272.	6.2	83
74	Influence of N-Doping on the Structure and Electronic Properties of Titania Nanoparticle Photocatalysts. Journal of Physical Chemistry B, 2006, 110, 16482-16486.	2.6	83
75	Nitrogen-containing TiO2 photocatalysts. Applied Catalysis B: Environmental, 2006, 65, 301-308.	20.2	83
76	Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catalysis Science and Technology, 2014, 4, 2006.	4.1	83
77	Anatase-TiO ₂ Nanomaterials:  Analysis of Key Parameters Controlling Crystallization. Journal of the American Chemical Society, 2007, 129, 13604-13612.	13.7	82
78	EPR study on oxygen handling properties of ceria, zirconia and Zr–Ce (1 : 1) mixed oxide samples. Catalysis Letters, 2000, 65, 197-204.	2.6	81
79	Structural, Morphological, and Oxygen Handling Properties of Nanosized Ceriumâ [*] Terbium Mixed Oxides Prepared by Microemulsion. Chemistry of Materials, 2003, 15, 4309-4316.	6.7	81
80	Boosting TiO2-anatase antimicrobial activity: Polymer-oxide thin films. Applied Catalysis B: Environmental, 2009, 89, 441-447.	20.2	81
81	Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation. Applied Catalysis B: Environmental, 2010, 93, 274-281.	20.2	80
82	Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Applied Catalysis B: Environmental, 2015, 179, 468-478.	20.2	79
83	Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chemical Society Reviews, 2019, 48, 637-682.	38.1	79
84	Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General, 2016, 518, 2-17.	4.3	78
85	Interaction of CO and NO with PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 8017-8023.	2.6	74
86	N- and/or W-(co)doped TiO2-anatase catalysts: Effect of the calcination treatment on photoactivity. Applied Catalysis B: Environmental, 2010, 95, 238-244.	20.2	74
87	UV and visible light optimization of anatase TiO2 antimicrobial properties: Surface deposition of metal and oxide (Cu, Zn, Ag) species. Applied Catalysis B: Environmental, 2013, 140-141, 680-690.	20.2	73
88	Unraveling the Active Site in Copperâ^'Ceria Systems for the Waterâ^'Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO _{2â^'<i>x</i>Characterization of an Inverse Powder CeO_{2â^'<i>x</i>Characterization of an Inverse Powder CeO_{2â^'<i>x</i>Characterization of an Inverse Powder CeO_{2â^'<i>x</i>Characterization of an Inverse Powder CeO_{36.00}}}}}	3.1	71
89	Resonant X-ray spectroscopy to study K absorption pre-edges in 3d transition metal compounds. European Physical Journal: Special Topics, 2009, 169, 207-214.	2.6	70
90	Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals. Green Chemistry, 2013, 15, 2786.	9.0	70

#	Article	IF	CITATIONS
91	Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Applied Catalysis B: Environmental, 2018, 238, 533-545.	20.2	70
92	Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts. Journal of Catalysis, 2017, 347, 157-169.	6.2	68
93	Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties. Journal of Physical Chemistry C, 2009, 113, 9182-9190.	3.1	66
94	Mechanochemical synthesis of three double perovskites: Cs ₂ AgBiBr ₆ , (CH ₃ NH ₃) ₂ TlBiBr ₆ and Cs ₂ AgSbBr ₆ . Nanoscale, 2019, 11, 16650-16657.	5.6	65
95	Cerium–terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. Journal of Power Sources, 2005, 151, 43-51.	7.8	64
96	Composite Bi2O3–TiO2 catalysts for toluene photo-degradation: Ultraviolet and visible light performances. Applied Catalysis B: Environmental, 2014, 156-157, 307-313.	20.2	63
97	Promotion of CeO2–TiO2 photoactivity by g-C3N4: Ultraviolet and visible light elimination of toluene. Applied Catalysis B: Environmental, 2015, 164, 261-270.	20.2	63
98	Behavior of Palladium–Copper Catalysts for CO and NO Elimination. Journal of Catalysis, 2000, 190, 387-395.	6.2	62
99	Role of the state of the metal component on the light-off performance ofÂPd-based three-way catalysts. Journal of Catalysis, 2004, 221, 594-600.	6.2	62
100	Nanosized Ti–V mixed oxides: Effect of doping level in the photo-catalytic degradation of toluene using sunlight-type excitation. Applied Catalysis B: Environmental, 2007, 74, 26-33.	20.2	62
101	Influence of Structural and Surface Characteristics of Ti1-xZrxO2 Nanoparticles on the Photocatalytic Degradation of Methylcyclohexane in the Gas Phase. Chemistry of Materials, 2007, 19, 4283-4291.	6.7	61
102	Evolution of H2 photoproduction with Cu content on CuO -TiO2 composite catalysts prepared by a microemulsion method. Applied Catalysis B: Environmental, 2015, 163, 214-222.	20.2	61
103	Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO–O2 and CO–O2–NO reactions: a combined catalytic activity–in situ DRIFTSÂstudy. Journal of Catalysis, 2004, 221, 85-92.	6.2	60
104	Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 2013, 14, 9249-9266.	4.1	60
105	Effects of Copper on the Catalytic Properties of Bimetallic Pd–Cu/(Ce,Zr)Ox/Al2O3 and Pd–Cu/(Ce,Zr)Ox Catalysts for CO and NO Elimination. Journal of Catalysis, 2002, 206, 281-294.	6.2	59
106	Heterogeneous photocatalysis: Light-matter interaction and chemical effects in quantum efficiency calculations. Journal of Catalysis, 2015, 330, 154-166.	6.2	59
107	Phaseâ€Contact Engineering in Mono―and Bimetallic Cuâ€Ni Coâ€catalysts for Hydrogen Photocatalytic Materials. Angewandte Chemie - International Edition, 2018, 57, 1199-1203.	13.8	59
108	Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: A kinetic study. Applied Catalysis B: Environmental, 2013, 140-141, 626-635.	20.2	58

#	Article	IF	CITATIONS
109	Composite H3PW12O40–TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225, 100-109.	20.2	58
110	Photoformed electron transfer from TiO2 to metal clusters. Catalysis Communications, 2008, 9, 1991-1995.	3.3	56
111	Characterization of Active Sites/Entities and Redox/Catalytic Correlations in Copper-Ceria-Based Catalysts for Preferential Oxidation of CO in H2-Rich Streams. Catalysts, 2013, 3, 378-400.	3.5	56
112	Acetaldehyde degradation under UV and visible irradiation using CeO2–TiO2 composite systems: Evaluation of the photocatalytic efficiencies. Chemical Engineering Journal, 2014, 255, 297-306.	12.7	56
113	Study of the Heterometallic Bond Nature in PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 141-147.	2.6	55
114	Morphological and Structural Changes during the Reduction and Reoxidation of CuO/CeO ₂ and Ce _{1â€"<i>x</i>} Cu _{<i>x</i>} O ₂ Nanocatalysts: <i>In Situ</i> Studies with Environmental TEM, XRD, and XAS. Journal of Physical Chemistry C, 2011, 115, 13851-13859.	3.1	55
115	Tracking Down the Reduction Behavior of Copper-on-Alumina Catalysts. Journal of Catalysis, 1998, 178, 253-263.	6.2	54
116	Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2. Applied Catalysis B: Environmental, 2009, 90, 633-641.	20.2	52
117	The effect of Ni in Pd–Ni/(Ce,Zr)O/AlO catalysts used for stoichiometric CO and NO elimination. Part 2: Catalytic activity and in situ spectroscopic studies. Journal of Catalysis, 2005, 235, 262-271.	6.2	51
118	Evaluation of the Role of the Metal–Support Interfacial Centers in the Dry Reforming of Methane on Alumina-Supported Rhodium Catalysts. Journal of Catalysis, 2000, 190, 296-308.	6.2	50
119	Ce–Zr–Ca Ternary Mixed Oxides: Structural Characteristics and Oxygen Handling Properties. Journal of Catalysis, 2002, 211, 326-334.	6.2	50
120	Ca Doping of Nanosize Ceâ^'Zr and Ceâ^'Tb Solid Solutions:Â Structural and Electronic Effects. Chemistry of Materials, 2005, 17, 4181-4193.	6.7	49
121	Operando DRIFTS and XANES Study of Deactivating Effect of CO ₂ on a Ce _{0.8} Cu _{0.2} O ₂ CO-PROX Catalyst. Journal of Physical Chemistry C, 2010, 114, 18576-18582.	3.1	49
122	Nature-inspired hierarchical materials for sensing and energy storage applications. Chemical Society Reviews, 2021, 50, 4856-4871.	38.1	49
123	Surface and Bulk Characterisation of Metallic Phases Present during CO Hydrogenation over Pd–Cu/KL Zeolite Catalysts. Journal of Catalysis, 1996, 164, 477-483.	6.2	48
124	Water-Gas Shift Reaction on Ni–W–Ce Catalysts: Catalytic Activity and Structural Characterization. Journal of Physical Chemistry C, 2014, 118, 2528-2538.	3.1	48
125	Microwave-assisted preparation of Ag/Ag ₂ S carbon hybrid structures from pig bristles as efficient HER catalysts. Journal of Materials Chemistry A, 2018, 6, 21516-21523.	10.3	48
126	Spectroscopic Characterization of Heterogeneity and Redox Effects in Zirconiumâ-'Cerium (1:1) Mixed Oxides Prepared by Microemulsion Methods. Journal of Physical Chemistry B, 2003, 107, 2667-2677.	2.6	47

#	Article	IF	CITATIONS
127	Physical and chemical properties of Ce1â^'xZrxO2 nanoparticles and Ce1â^'xZrxO2(111) surfaces: synchrotron-based studies. Journal of Molecular Catalysis A, 2005, 228, 11-19.	4.8	47
128	W,N-Codoped TiO ₂ -Anatase: A Sunlight-Operated Catalyst for Efficient and Selective Aromatic Hydrocarbons Photo-Oxidation. Journal of Physical Chemistry C, 2009, 113, 8553-8555.	3.1	47
129	Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants. Journal of Catalysis, 2015, 321, 90-99.	6.2	47
130	Efficient Electrochemical Production of Syngas from CO ₂ and H ₂ O by using a Nanostructured Ag/g ₃ N ₄ Catalyst. ChemElectroChem, 2016, 3, 1497-1502.	3.4	46
131	Photoactivity and charge trapping sites in copper and vanadium doped anatase TiO ₂ nano-materials. Catalysis Science and Technology, 2016, 6, 1094-1105.	4.1	46
132	g-C3N4/TiO2 composite catalysts for the photo-oxidation of toluene: Chemical and charge handling effects. Chemical Engineering Journal, 2019, 378, 122228.	12.7	46
133	Behavior of bimetallic Pd?Cr/Al2O3 and Pd?Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination. Journal of Catalysis, 2003, 214, 220-233.	6.2	45
134	The effect of Ni in Pd–Ni/(Ce,Zr)O/AlO catalysts used for stoichiometric CO and NO elimination. Part 1: Nanoscopic characterization of the catalysts. Journal of Catalysis, 2005, 235, 251-261.	6.2	44
135	Iron–sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation. Applied Catalysis B: Environmental, 2012, 117-118, 310-316.	20.2	44
136	Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Applied Catalysis B: Environmental, 2019, 256, 117790.	20.2	44
137	Thermal behavior of (Ce,Zr)Ox/Al2O3 complex oxides prepared by a microemulsion method. Physical Chemistry Chemical Physics, 2002, 4, 2473-2481.	2.8	43
138	Role of Pt in Pt/Ba/Al2O3NOxstorage and reduction traps. Physical Chemistry Chemical Physics, 2003, 5, 4418-4427.	2.8	43
139	Effect of exfoliation and surface deposition of MnOx species in g-C3N4: Toluene photo-degradation under UV and visible light. Applied Catalysis B: Environmental, 2017, 203, 663-672.	20.2	43
140	Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol. Chemical Engineering Science, 2019, 194, 78-84.	3.8	43
141	Influence of Sn4+on the structural and electronic properties of Ti1â^'xSnxO2nanoparticles used as photocatalysts. Physical Chemistry Chemical Physics, 2006, 8, 2421-2430.	2.8	42
142	Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental, 2011, 104, 346-352.	20.2	42
143	Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Applied Catalysis B: Environmental, 2012, 111-112, 96-105.	20.2	42
144	Chromium–saponite clay catalysts: Preparation, characterization and catalytic performance in propene oxidation. Applied Catalysis A: General, 2007, 327, 1-12.	4.3	41

#	Article	IF	CITATIONS
145	Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation. Nanomaterials, 2016, 6, 93.	4.1	41
146	UV and visible hydrogen photo-production using Pt promoted Nb-doped TiO 2 photo-catalysts: Interpreting quantum efficiency. Applied Catalysis B: Environmental, 2017, 216, 133-145.	20.2	41
147	Nanoparticulate Pd Supported Catalysts: Size-Dependent Formation of $Pd(I)/Pd(0)$ and Their Role in CO Elimination. Journal of the American Chemical Society, 2011, 133, 4484-4489.	13.7	40
148	Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities. Applied Catalysis B: Environmental, 2014, 147, 526-533.	20.2	40
149	Hydroxyl Identification on ZnO by Infrared Spectroscopies: Theory and Experiments. Journal of Physical Chemistry C, 2014, 118, 1492-1505.	3.1	40
150	Morphology effects in photoactive ZnO nanostructures: photooxidative activity of polar surfaces. Journal of Materials Chemistry A, 2015, 3, 8782-8792.	10.3	39
151	Detecting the Genesis of a High-Performance Carbon-Supported Pd Sulfide Nanophase and Its Evolution in the Hydrogenation of Butadiene. ACS Catalysis, 2015, 5, 5235-5241.	11.2	38
152	Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustainable Chemistry and Engineering, 2018, 6, 16637-16644.	6.7	38
153	State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Frontiers in Bioengineering and Biotechnology, 2020, 8, 612567.	4.1	38
154	Ceria-based Catalysts for the Production of H2 Through the Water-gas-shift Reaction: Time-resolved XRD and XAFS Studies. Topics in Catalysis, 2008, 49, 81-88.	2.8	37
155	Effective Enhancement of TiO ₂ Photocatalysis by Synergistic Interaction of Surface Species: From Promoters to Co-catalysts. ACS Catalysis, 2014, 4, 4277-4288.	11.2	37
156	Microwave-assisted mild-temperature preparation of neodymium-doped titania for the improved photodegradation of water contaminants. Applied Catalysis A: General, 2012, 441-442, 47-53.	4.3	36
157	Towards full-spectrum photocatalysis: Successful approaches and materials. Applied Catalysis A: General, 2021, 610, 117966.	4.3	36
158	Structure and activity of iron-doped TiO ₂ -anatase nanomaterials for gas-phase toluene photo-oxidation. Catalysis Science and Technology, 2013, 3, 626-634.	4.1	35
159	Role of the Interface in Baseâ€Metal Ceriaâ€Based Catalysts for Hydrogen Purification and Production Processes. ChemCatChem, 2015, 7, 3614-3624.	3.7	35
160	Gas phase 2-propanol degradation using titania photocatalysts: Study of the quantum efficiency. Applied Catalysis B: Environmental, 2017, 201, 400-410.	20.2	35
161	Promoting H2 photoproduction of TiO2-based materials by surface decoration with Pt nanoparticles and SnS2 nanoplatelets. Applied Catalysis B: Environmental, 2020, 277, 119246.	20.2	35
162	Influence of thermal sintering on the activity for CO–O2 and CO–O2–NO stoichiometric reactions over Pd/(Ce, Zr)Ox/Al2O3 catalysts. Applied Catalysis B: Environmental, 2002, 38, 151-158.	20.2	34

#	Article	IF	CITATIONS
163	Thermo-photo degradation of 2-propanol using a composite ceria-titania catalyst: Physico-chemical interpretation from a kinetic model. Applied Catalysis B: Environmental, 2018, 225, 298-306.	20.2	34
164	Kinetics of photocatalytic disinfection in TiO2-containing polymer thin films: UV and visible light performances. Applied Catalysis B: Environmental, 2012, 121-122, 230-238.	20.2	33
165	Photocatalytic behavior of silver vanadates: Microemulsion synthesis and post-reaction characterization. Chemical Engineering Journal, 2013, 224, 24-31.	12.7	33
166	Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternary composites: Photo-handling of charge carriers. Applied Catalysis B: Environmental, 2015, 176-177, 687-698.	20.2	33
167	Fe-saponite pillared and impregnated catalysts. Applied Catalysis B: Environmental, 2004, 50, 227-234.	20.2	32
168	The structural and electronic properties of nanostructured Ce1â^'xâ^'yZrxTbyO2 ternary oxides: Unusual concentration of Tb3+ and metalâ†"oxygenâ†"metal interactions. Journal of Chemical Physics, 2005, 122, 154711.	3.0	32
169	In-situ characterization of water–gas shift catalysts using time-resolved X-ray diffraction. Catalysis Today, 2009, 145, 188-194.	4.4	32
170	Redox and catalytic properties of CuO/CeO2 under CO+O2+NO: Promoting effect of NO on CO oxidation. Catalysis Today, 2012, 180, 81-87.	4.4	32
171	Green photo-oxidation of styrene over W–Ti composite catalysts. Journal of Catalysis, 2014, 309, 428-438.	6.2	32
172	Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. Journal of Molecular Catalysis A, 2010, 320, 14-18.	4.8	31
173	Observing Oxygen Storage and Release at Work during Cycling Redox Conditions: Synergies between Noble Metal and Oxide Promoter. Angewandte Chemie - International Edition, 2012, 51, 2363-2367.	13.8	31
174	Efficient and stable Ni–Ce glycerol reforming catalysts: Chemical imaging using X-ray electron and scanning transmission microscopy. Applied Catalysis B: Environmental, 2015, 165, 139-148.	20.2	31
175	Physicochemical Study of Structural Disorder in Vanadyl Pyrophosphate. Journal of Catalysis, 1993, 141, 671-687.	6.2	30
176	Multitechnique analysis of supported Pd particles upon dynamic, cycling CO/NO conditions: Size-dependence of the structure–activity relationship. Journal of Catalysis, 2010, 270, 275-284.	6.2	29
177	Making Photo-selective TiO ₂ Materials by Cation–Anion Codoping: From Structure and Electronic Properties to Photoactivity. Journal of Physical Chemistry C, 2012, 116, 18759-18767.	3.1	29
178	Abatement of organics and Escherichia coli using CeO2-TiO2 composite oxides: Ultraviolet and visible light performances. Applied Catalysis B: Environmental, 2014, 154-155, 350-359.	20.2	29
179	Mechanochemical Synthesis of CuO/MgAl2O4 and MgFe2O4 Spinels for Vanillin Production from Isoeugenol and Vanillyl Alcohol. Molecules, 2019, 24, 2597.	3.8	29
180	Efficient Ru-based scrap waste automotive converter catalysts for the continuous-flow selective hydrogenation of cinnamaldehyde. Green Chemistry, 2019, 21, 4712-4722.	9.0	29

#	Article	IF	CITATIONS
181	The bonding mechanism of NO to Cu(111). Surface Science, 1993, 280, 441-449.	1.9	28
182	Bonding geometry and mechanism of NO adsorbed on Cu2O(111): NO activation by Cu+ cations. Journal of Chemical Physics, 1994, 101, 10134-10139.	3.0	28
183	Structural aspects of the interaction of methyl thiol and dimethyldisulphide with Ni(111). Journal of Physics Condensed Matter, 1995, 7, 7781-7796.	1.8	28
184	"Oxidationless―Promotion of Rapid Palladium Redispersion by Oxygen during Redox CO/(NO+O ₂) Cycling. Angewandte Chemie - International Edition, 2007, 46, 8629-8631.	13.8	28
185	Operando DRIFTS study of the redox and catalytic properties of $CuO/Ce < sub > 1 a^2 x < sub > Tb < sub > x < sub > O < sub > 2 a^2 a < sub > (x = 0 a \in 0.5) catalysts: evidence of an induction step during CO oxidation. Physical Chemistry Chemical Physics, 2012, 14, 2144-2151.$	2.8	28
186	UV and visible light driven H2 photo-production using Nb-doped TiO2: Comparing Pt and Pd co-catalysts. Molecular Catalysis, 2017, 437, 1-10.	2.0	28
187	H2 photo-production from methanol, ethanol and 2-propanol: Pt-(Nb)TiO2 performance under UV and visible light. Molecular Catalysis, 2018, 446, 88-97.	2.0	28
188	Operando Spectroscopy in Photocatalysis. ChemPhotoChem, 2018, 2, 777-785.	3.0	28
189	New Insights on the Mechanism of the NO Reduction with CO over Alumina-Supported Copper Catalysts. The Journal of Physical Chemistry, 1995, 99, 16380-16382.	2.9	27
190	Photocatalytic degradation of ethidium bromide over titania in aqueous solutions. Applied Catalysis B: Environmental, 2007, 76, 395-402.	20.2	27
191	Theoretical Study of the Catalytic Activity of Bimetallic RhCu Surfaces and Nanoparticles toward H2 Dissociation. Journal of Physical Chemistry B, 2002, 106, 7839-7845.	2.6	26
192	Pd-based (Ce,Zr)O -supported catalysts: Promoting effect of base metals (Cr, Cu, Ni) in CO and NO elimination. Catalysis Today, 2009, 143, 195-202.	4.4	26
193	NOx storage and reduction over Pt/Ba/Al2O3. Studies in Surface Science and Catalysis, 2000, , 1331-1336.	1.5	25
194	Facile synthesis of B/g-C ₃ N ₄ composite materials for the continuous-flow selective photo-production of acetone. Green Chemistry, 2020, 22, 4975-4984.	9.0	25
195	Surface modification of Cu2O-CuO photocatalyst on Cu wire through decorating with TiO2 nanoparticles for enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2022, 919, 165864.	5.5	25
196	Effect of the Madelung potential value and symmetry on the adsorption properties of adsorbate/oxide systems. Surface Science, 1996, 349, 207-215.	1.9	24
197	An X-Ray Absorption Spectroscopy Determination of the Morphology of Palladium Particles in K L-Zeolite. Journal of Catalysis, 1997, 166, 75-88.	6.2	24
198	Solar light assisted photodegradation of ethidium bromide over titania-based catalysts. Catalysis Today, 2007, 129, 79-85.	4.4	24

#	Article	IF	CITATIONS
199	Spectroscopic Study on the Nature of Active Entities in Copper–Ceria CO-PROX Catalysts. Topics in Catalysis, 2009, 52, 1425-1432.	2.8	24
200	Versatile Protein-Templated TiO ₂ Nanocomposite for Energy Storage and Catalytic Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5329-5337.	6.7	24
201	Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 1510-1520.	7.1	24
202	The growth of thin Ti and TiOx films on Pt(111): Morphology and oxidation states. Surface Science, 1992, 273, 31-39.	1.9	23
203	Ce–Zr–Ca Ternary Mixed Oxides: Structural Characteristics and Oxygen Handling Properties. Journal of Catalysis, 2002, 211, 326-334.	6.2	23
204	Redox behaviour of Pd-based TWCs under dynamic conditions: analysis using dispersive XAS and mass spectrometry. Chemical Communications, 2005, , 4092.	4.1	23
205	Biocidal Capability Optimization in Organicâ^'Inorganic Nanocomposites Based on Titania. Environmental Science & Technology, 2009, 43, 1630-1634.	10.0	23
206	Tungsten as an interface agent leading to highly active and stable copper–ceria water gas shift catalyst. Applied Catalysis B: Environmental, 2013, 132-133, 423-432.	20.2	23
207	Effect of the anatase–rutile contact in gas phase toluene photodegradation quantum efficiency. Chemical Engineering Journal, 2016, 299, 393-402.	12.7	23
208	Time-Resolved XAS Investigation of the Local Environment and Evolution of Oxidation States of a Fischer–Tropsch Ru–Cs/C Catalyst. ACS Catalysis, 2016, 6, 1437-1445.	11.2	23
209	Highly Active Catalytic Ruthenium/TiO2Nanomaterials for Continuous Production of γâ€Valerolactone. ChemSusChem, 2018, 11, 2604-2611.	6.8	23
210	Sunlight-Operated TiO2-Based Photocatalysts. Molecules, 2020, 25, 4008.	3.8	23
211	X-ray Absorption Spectroscopic Investigation of Partially Reduced Cobalt Species in Coâ^'MCM-41 Catalysts during Synthesis of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 16332-16339.	2.6	22
212	Ceria promotion of acetaldehyde photo-oxidation in a TiO ₂ -based catalyst: a spectroscopic and kinetic study. Catalysis Science and Technology, 2015, 5, 1521-1531.	4.1	22
213	Surface CuO, Bi ₂ O ₃ , and CeO ₂ Species Supported in TiO ₂ -Anatase: Study of Interface Effects in Toluene Photodegradation Quantum Efficiency. ACS Applied Materials & Diverge Company and Company	8.0	22
214	Er-W codoping of TiO2-anatase: Structural and electronic characterization and disinfection capability under UV–vis, and near-IR excitation. Applied Catalysis B: Environmental, 2018, 228, 113-129.	20.2	22
215	XAS/DRIFTS/MS spectroscopy for time-resolved <i>operando</i> investigations at high temperature. Journal of Synchrotron Radiation, 2018, 25, 1745-1752.	2.4	22
216	Selective hydrogen production from formic acid decomposition over Mo carbides supported on carbon materials. Catalysis Science and Technology, 2020, 10, 6790-6799.	4.1	22

#	Article	IF	CITATIONS
217	Influence of the nature of the Ce-promoter on the behavior of Pd and Pd–Cr TWC systems. Applied Catalysis A: General, 2004, 259, 207-220.	4.3	21
218	Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chemistry, 2019, 21, 300-306.	9.0	21
219	Continuous Flow Synthesis of High Valuable N-Heterocycles via Catalytic Conversion of Levulinic Acid. Frontiers in Chemistry, 2019, 7, 103.	3.6	21
220	Toluene and styrene photo-oxidation quantum efficiency: Comparison between doped and composite tungsten-containing anatase-based catalysts. Applied Catalysis B: Environmental, 2019, 245, 49-61.	20.2	21
221	Unprecedented Wiring Efficiency of Sulfonated Graphitic Carbon Nitride Materials: Toward High-Performance Amperometric Recombinant CotA Laccase Biosensors. ACS Sustainable Chemistry and Engineering, 2019, 7, 1474-1484.	6.7	21
222	Geometry, vibrational frequencies and bonding mechanism of NO adsorbed on Cu(111). Journal of Chemical Physics, 1996, 104, 5647-5656.	3.0	20
223	Genesis of Surface and Bulk Phases in Rhodiumâ^'Copper Catalysts. Langmuir, 1999, 15, 5295-5302.	3.5	20
224	Palygorskite–TiO2 nanocomposites: Part 2. photocatalytic activities in decomposing air and organic pollutants. Applied Clay Science, 2013, 83-84, 198-202.	5.2	20
225	Sunlightâ€Driven Hydrogen Production Using an Annular Flow Photoreactor and g ₃ N ₄ â€Based Catalysts. ChemPhotoChem, 2018, 2, 870-877.	3.0	20
226	Improving Electrochemical Hydrogen Evolution of Ag@CN Nanocomposites by Synergistic Effects with α-Rich Proteins. ACS Applied Materials & Interfaces, 2020, 12, 2207-2215.	8.0	20
227	Structure determination for PF3absorption on Ni(111). Journal of Physics Condensed Matter, 1992, 4, 6509-6522.	1.8	19
228	Evaluation of Surface and Bulk Phases during Oxychlorination/Reduction Cycles of Pt–Re Catalysts. Journal of Catalysis, 1999, 182, 199-207.	6.2	19
229	Dynamic "operando―observation of 1 wt% Pd-based TWCs: Simultaneous XAS/DRIFTS/mass spectrometry analysis of the effects of Ce0.5Zr0.5O2 loading on structure, reactivity and performance. Catalysis Today, 2009, 145, 288-293.	4.4	19
230	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. European Polymer Journal, 2015, 71, 412-422.	5.4	19
231	Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light. Applied Catalysis B: Environmental, 2018, 228, 130-141.	20.2	19
232	Title is missing!. Catalysis Letters, 1997, 49, 163-167.	2.6	18
233	Study on UV Excitation Properties of Y2O3:Ln3+ (Ln = Eu3+ or Tb3+) Luminescent Nanomaterials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1443-1448.	0.9	18
234	Following the Evolution of Ru/Activated Carbon Catalysts during the Decomposition–Reduction of the Ru(NO)(NO ₃) ₃ Precursor. ChemCatChem, 2013, 5, 2446-2452.	3.7	18

#	Article	IF	CITATIONS
235	Waste-derived Materials: Opportunities in Photocatalysis. Topics in Current Chemistry, 2020, 378, 3.	5.8	18
236	Photocatalytic Production of Vanillin over CeO _{<i>x</i>>} and ZrO ₂ Modified Biomass-Templated Titania. Industrial & Engineering Chemistry Research, 2020, 59, 17085-17093.	3.7	18
237	Boosting Pt/TiO2 hydrogen photoproduction through Zr doping of the anatase structure: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2020, 398, 125665.	12.7	18
238	Toward the Green Production of H ₂ : Binary Ptâ€"Ru Promoted Nb-TiO ₂ Based Photocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 15671-15683.	6.7	17
239	Use of IR and XANES to Monitor Catalysts During Preparation, Regeneration and Reaction. Chemical Engineering Research and Design, 2000, 78, 935-942.	5.6	16
240	Platinization of sunlight active Ti–W mixed oxide photocatalysts. Journal of Catalysis, 2007, 245, 84-90.	6.2	16
241	Novel (NH4)4[NiMo6O24H6]·5H2O – TiO2 composite system: Photo-oxidation of toluene under UV and sunlight-type illumination. Applied Catalysis B: Environmental, 2018, 238, 381-392.	20.2	16
242	DRIFTS–XANES study of Pd-Ni/(Ce,Zr)Ox/Al2O3 model automotive catalysts. Catalysis Today, 2007, 126, 90-95.	4.4	15
243	Influence of the Ce–Zr promoter on Pd behaviour under dynamic CO/NO cycling conditions: a structural and chemical approach. Physical Chemistry Chemical Physics, 2013, 15, 8640.	2.8	15
244	Innovative insights in a plug flow microreactor for <i>operando </i> X-ray studies. Journal of Applied Crystallography, 2013, 46, 1523-1527.	4.5	15
245	Understanding the role of oxygen surface groups: The key for a smart ruthenium-based carbon-supported heterogeneous catalyst design and synthesis. Applied Catalysis A: General, 2017, 544, 66-76.	4.3	15
246	A structural and surface approach to size and shape control of sulfur-modified undoped and Fe-doped TiO2 anatase nano-materials. Physical Chemistry Chemical Physics, 2012, 14, 5628.	2.8	14
247	Surface and Bulk Approach to Timeâ€resolved Characterization of Heterogeneous Catalysts. ChemCatChem, 2012, 4, 725-737.	3.7	14
248	Microemulsion: A versatile synthesis tool for photocatalysis. Current Opinion in Colloid and Interface Science, 2020, 49, 42-59.	7.4	14
249	Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co ₃ O ₄ -g-C ₃ N ₄ nanomaterials for the oxygen evolution reaction. Nanoscale, 2020, 12, 8477-8484.	5.6	14
250	Surface properties of CeZrO4-based materials employed as catalysts supports. Journal of Alloys and Compounds, 2001, 323-324, 605-609.	5.5	13
251	Oxygen handling properties of Ce-Ca mixed oxides solutions. Studies in Surface Science and Catalysis, 2001, , 347-354.	1.5	13
252	Catalytic Properties of Ag/Al2O3Catalysts for Lean NOxReduction Processes and Characterisation of Active Silver Species. Topics in Catalysis, 2004, 30/31, 65-70.	2.8	13

#	Article	IF	CITATIONS
253	Supported catalysts for DeNOx reaction based on iron clays. Journal of Molecular Catalysis A, 2004, 219, 309-313.	4.8	13
254	Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2021, 425, 130641.	12.7	13
255	Oxide-based composites: applications in thermo-photocatalysis. Catalysis Science and Technology, 2021, 11, 6904-6930.	4.1	13
256	Binary phase diagrams of lead(II) n-alkanoates and n-alkanoic acids. Pure and Applied Chemistry, 1992, 64, 65-71.	1.9	12
257	Influence of preparation method on surface and bulk properties of sunlight-active Ti–W mixed oxide photocatalysts. Physical Chemistry Chemical Physics, 2003, 5, 2913-2921.	2.8	12
258	Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites. European Polymer Journal, 2010, 46, 397-403.	5.4	12
259	Characterization of Photo-catalysts: From Traditional to Advanced Approaches. Topics in Current Chemistry, 2019, 377, 24.	5.8	12
260	One-Pot Cu/TiO2 Nanoparticles Synthesis for Trans-Ferulic Acid Conversion into Vanillin. Molecules, 2019, 24, 3985.	3.8	12
261	STUDIES OF CERIA-CONTAINING CATALYSTS USING MAGNETIC RESONANCE AND X-RAY SPECTROSCOPIES. Catalytic Science Series, 2002, , 169-216.	0.0	11
262	Measuring and interpreting quantum efficiency of acid blue 9 photodegradation using TiO2-based catalysts. Applied Catalysis A: General, 2018, 550, 38-47.	4.3	11
263	(NH4)4[NiMo6O24H6].5H2O $/$ g-C3N4 materials for selective photo-oxidation of C O and C C bonds. Applied Catalysis B: Environmental, 2020, 278, 119299.	20.2	11
264	Interactions in the Thallium(I) Heptanoate and Heptanoic Acid System: Association, Aggregation, and Phase Behavior. Journal of Colloid and Interface Science, 1997, 185, 371-381.	9.4	10
265	Role of the Support in Syngas Conversion over Pd/Cu–KL Zeolite Catalysts. Journal of Catalysis, 1998, 176, 235-245.	6.2	10
266	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	3.6	10
267	Morphological and structural behavior of TiO ₂ nanoparticles in the presence of WO ₃ : crystallization of the oxide composite system. Physical Chemistry Chemical Physics, 2014, 16, 19540-19549.	2.8	10
268	Characterization and performance of Cu2O nanostructures on Cu wire photocatalyst synthesized in-situ by chemical and thermal oxidation. Journal of Materials Science: Materials in Electronics, 2019, 30, 13675-13689.	2.2	10
269	New Strategies for the Improvement of Automobile Catalysts. International Journal of Molecular Sciences, 2001, 2, 251-262.	4.1	9
270	Catalytic Adventures in Space and Time Using High Energy X-rays. Catalysis Surveys From Asia, 2014, 18, 134-148.	2.6	9

#	Article	IF	Citations
271	Heterogeneous Photocatalysis. ChemEngineering, 2021, 5, 26.	2.4	9
272	Nanostructured Oxides in Photo-Catalysis. , 2006, , 491-562.		8
273	Effect of different promoter precursors in a model Ru-Cs/graphite system on the catalytic selectivity for Fischer-Tropsch reaction. Applied Surface Science, 2018, 447, 307-314.	6.1	8
274	Ultrastable Co x Si y O z Nanowires by Glancing Angle Deposition with Magnetron Sputtering as Novel Electrocatalyst for Water Oxidation. ChemCatChem, 2019, 11, 6111-6115.	3.7	8
275	Effect of TiO2 nanoparticle loading by sol–gel method on the gas-phase photocatalytic activity of CuxO–TiO2 nanocomposite. Journal of Sol-Gel Science and Technology, 2020, 96, 464-479.	2.4	8
276	Pt/B-g-C3N4 catalysts for hydrogen photo-production: Activity interpretation through a spectroscopic and intrinsic kinetic analysis. Journal of Environmental Chemical Engineering, 2021, 9, 106073.	6.7	8
277	{Thallium(I) n-tetradecanoate + n-tetradecanoic acid} phase diagram: formation of a molecular complex. Journal of Chemical Thermodynamics, 1991, 23, 495-502.	2.0	7
278	Surface structure and redox chemistry of ceria-containing automotive catalytic systems. Research on Chemical Intermediates, 2000, 26, 103-111.	2.7	7
279	Phase Behavior of then-Decanoic Acid + Thallium(I)n-Decanoate System. Langmuir, 2000, 16, 5825-5830.	3.5	7
280	Visible-light driven TiO2 photocatalysts from Ti-oxychloride precursors. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 136-143.	3.9	7
281	Synthesis, Characterization, and Photodegradation Behavior of Single-Phase Anatase TiO2 Materials Synthesized from Ti-oxychloride Precursors. Langmuir, 2008, 24, 11111-11118.	3.5	7
282	Carbothermally generated copper–molybdenum carbide supported on graphite for the CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2021, 11, 4051-4059.	4.1	7
283	CO and NO elimination over Pd-Cu catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1325-1330.	1.5	6
284	Phaseâ€Contact Engineering in Mono―and Bimetallic Cuâ€Ni Coâ€catalysts for Hydrogen Photocatalytic Materials. Angewandte Chemie, 2018, 130, 1213-1217.	2.0	6
285	A flexible cell for <i>in situ</i> combined XAS–DRIFTS–MS experiments. Journal of Synchrotron Radiation, 2019, 26, 801-810.	2.4	6
286	Benign-by-design advanced nanomaterials for environmental and energy-related applications. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 98-102.	5.9	6
287	Role of alkali-cyano group interaction in g-C3N4 based catalysts for hydrogen photo-production. Catalysis Today, 2022, 394-396, 25-33.	4.4	6
288	Titania-decorated copper oxide nanophotocatalyst powder: A stable and promoted photocatalytic active system. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113401.	3.9	6

#	Article	IF	Citations
289	Interpreting quantum efficiency for energy and environmental applications of photo-catalytic materials. Current Opinion in Chemical Engineering, 2021, 33, 100712.	7.8	6
290	Phase Behavior of a Pd-Cu Bimetallic Catalyst During Temperature-Programmed Reduction. European Physical Journal Special Topics, 1997, 7, C2-895-C2-896.	0.2	5
291	Theory of Size, Confinement, and Oxidation Effects., 2006,, 7-47.		5
292	Chromism and catalysis shake hands. Nature Catalysis, 2018, 1, 643-644.	34.4	5
293	Biomass valorization: Catalytic approaches using benign-by-design nanomaterials. Advances in Inorganic Chemistry, 2021, 77, 27-58.	1.0	5
294	Assessing quantitatively charge carrier fate in 4-chlorophenol photocatalytic degradation using globular titania catalysts: Implications in quantum efficiency calculation. Journal of Environmental Chemical Engineering, 2021, 9, 106074.	6.7	5
295	Photodegradation of 2-propanol in gas phase over zirconium doped TiO2: Effect of Zr content. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113774.	3.9	5
296	Recent progress in the quantitative assessment and interpretation of photoactivity. Catalysis Reviews - Science and Engineering, 0 , 1 -55.	12.9	5
297	Consequences of chemical bonding on the adiabaticity of gas-surface reactions. Computational and Theoretical Chemistry, 1996, 371, 257-267.	1.5	4
298	Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 2008, 128, 851-854.	3.1	4
299	Reply to "Comment on 'Operando DRIFTS and XANES Study of Deactivating Effect of CO2 on a Ce0.8Cu0.2O2 CO-PROX Catalyst'â€, Journal of Physical Chemistry C, 2011, 115, 23237-23238.	3.1	4
300	Understanding W Doping in Wurtzite ZnO. Journal of Physical Chemistry C, 2018, 122, 19082-19089.	3.1	4
301	Support effect over rhodium catalysts during the reforming of methane by carbon dioxide. Studies in Surface Science and Catalysis, 2000, 130, 3675-3680.	1.5	3
302	Introduction the World of Oxide Nanomaterials. , 2006, , 1-5.		3
303	Titanium Dioxide–Polymer Nanocomposites with Advanced Properties. , 2012, , 119-149.		3
304	Shepherding reaction intermediates to optimize H2 yield using composite-doped TiO2-based photocatalysts. Chemical Engineering Journal, 2022, 442, 136333.	12.7	3
305	Chemical Properties of Oxide Nanoparticles: Surface Adsorption Studies from Gas- and Liquid-Phase Environments., 2006,, 335-351.		2
306	Photocatalytic Nanooxides: The Case of TiO2 and ZnO. , 2013, , 245-266.		2

#	Article	IF	CITATIONS
307	Sunlight active g-C3N4-based Mn+ (M Cu, Ni, Zn, Mn) – promoted catalysts: Sharing of nitrogen atoms as a door for optimizing photo-activity. Molecular Catalysis, 2020, 484, 110725.	2.0	2
308	Photocatalytic toluene degradation: braiding physico-chemical and intrinsic kinetic analyses. Reaction Chemistry and Engineering, 2020, 5, 1429-1440.	3.7	2
309	Metabolomics reveals synergy between Ag and g-C3N4 in Ag/g-C3N4 composite photocatalysts: a unique feature among Ag-doped biocidal materials. Metabolomics, 2021, 17, 53.	3.0	2
310	Effect of surface relaxation and rumpling on the vibrational spectrum of NO adsorbed on a Cu2O surface. Journal of Molecular Catalysis A, 1997, 119, 87-93.	4.8	1
311	Nanostructured Oxides in Chemistry: Characterization and Properties. ChemInform, 2004, 35, no.	0.0	1
312	Supported Metals in Vehicle Emission Control. Catalytic Science Series, 2011, , 493-552.	0.0	1
313	Pd-Pt bimetallic Nb-doped TiO2 for H2 photo-production: Gas and liquid phase processes. Molecular Catalysis, 2020, 481, 110240.	2.0	1
314	Use of IR and XANES spectroscopies to study NOx storage and reduction catalysts under reaction conditions. Special Publication - Royal Society of Chemistry, 2007, , 296-301.	0.0	1
315	H2 Photoproduction Efficiency: Implications of the Reaction Mechanism as a Function of the Methanol/Water Mixture. Catalysts, 2022, 12, 402.	3.5	1
316	Quantum chemical study of the bond activation for NO adsorbed on a Cu surface. Solid State Ionics, 1993, 63-65, 777-780.	2.7	0
317	Parametric Quantum Methods in Modeling Metal Oxide Nanoclusters and Surfaces. , 2006, , 217-245.		O
318	Techniques for the Study of the Electronic Properties. , 2006, , 165-183.		0
319	Nanostructured Oxides in DeNOx Technologies. , 2006, , 603-632.		0
320	Techniques for the Study of the Structural Properties. , 2006, , 137-164.		0
321	Unusual Physical and Chemical Properties of Cu in Ce1-xCuxO2 Oxides ChemInform, 2006, 37, no.	0.0	О
322	Visible Light-Responsive Titanium Oxide Photocatalysts: Preparations Based on Chemical Methods. Nanostructure Science and Technology, 2010, , 277-299.	0.1	0
323	Composite materials in thermo-photo catalysis. , 2021, , 409-420.		0
324	Characterization of Photo-catalysts: From Traditional to Advanced Approaches. Topics in Current Chemistry Collections, 2020, , 163-191.	0.5	0

#	Article	IF	CITATIONS
325	Fe-saponite pillared and impregnated catalysts*1II. Nature of the iron species active for the reduction of NOx with propene. Applied Catalysis B: Environmental, 2004, 50, 227-234.	20.2	O