Nadinath B Nillegoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hsp70 chaperone network. Nature Reviews Molecular Cell Biology, 2019, 20, 665-680.	37.0	721
2	Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils. Molecular Cell, 2015, 59, 781-793.	9.7	336
3	Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature, 2015, 524, 247-251.	27.8	320
4	Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO Journal, 2012, 31, 4221-4235.	7.8	284
5	A Targeted Proteomic Analysis of the Ubiquitin-Like Modifier Nedd8 and Associated Proteins. Journal of Proteome Research, 2008, 7, 1274-1287.	3.7	267
6	Molecular dissection of amyloid disaggregation by human HSP70. Nature, 2020, 587, 483-488.	27.8	153
7	HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature, 2020, 587, 489-494.	27.8	140
8	Ubr1 and Ubr2 Function in a Quality Control Pathway for Degradation of Unfolded Cytosolic Proteins. Molecular Biology of the Cell, 2010, 21, 2102-2116.	2.1	126
9	Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO Journal, 2017, 36, 783-796.	7.8	120
10	Protein Disaggregation in Multicellular Organisms. Trends in Biochemical Sciences, 2018, 43, 285-300.	7.5	103
11	Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Frontiers in Molecular Biosciences, 2015, 2, 57.	3.5	101
12	Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. Journal of Cell Biology, 2007, 176, 319-328.	5.2	92
13	A Network of Ubiquitin Ligases Is Important for the Dynamics of Misfolded Protein Aggregates in Yeast. Journal of Biological Chemistry, 2012, 287, 23911-23922.	3.4	63
14	Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. ELife, 2017, 6,	6.0	60
15	Hsp110 Chaperones Control Client Fate Determination in the Hsp70–Hsp90 Chaperone System. Molecular Biology of the Cell, 2010, 21, 1439-1448.	2.1	54
16	<i>In vivo</i> properties of the disaggregase function of Jâ€proteins and Hsc70 in <i>Caenorhabditis elegans</i> stress and aging. Aging Cell, 2017, 16, 1414-1424.	6.7	53
17	Functional diversity between HSP70 paralogs caused by variable interactions with specific co-chaperones. Journal of Biological Chemistry, 2020, 295, 7301-7316.	3.4	39
18	Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Molecular Biology of the Cell, 2017, 28, 2066-2075.	2.1	31

NADINATH B NILLEGODA

#	Article	IF	CITATIONS
19	J-domain protein chaperone circuits in proteostasis and disease. Trends in Cell Biology, 2023, 33, 30-47.	7.9	30
20	Ydj1 Protects Nascent Protein Kinases from Degradation and Controls the Rate of Their Maturation. Molecular and Cellular Biology, 2008, 28, 4434-4444.	2.3	25
21	Monitoring Protein Misfolding by Site-Specific Labeling of Proteins In Vivo. PLoS ONE, 2014, 9, e99395.	2.5	20
22	The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica, 2021, 106, 1519-1534.	3.5	17
23	Role of Molecular Chaperones in Biogenesis of the Protein Kinome. Methods in Molecular Biology, 2011, 787, 75-81.	0.9	11
24	Hidden information on protein function in censuses of proteome foldedness. Nature Communications, 2022, 13, 1992.	12.8	7
25	In Situ Monitoring of Transiently Formed Molecular Chaperone Assemblies in Bacteria, Yeast, and Human Cells. Journal of Visualized Experiments, 2019, , .	0.3	4