
## Judith A Hubbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171591/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Role of Frontal Thrusts in Tsunami Earthquake Generation. Bulletin of the Seismological Society of America, 2022, 112, 680-694.                                                                                       | 2.3  | 3         |
| 2  | Imaging the Upper 10Âkm Crustal Shear-Wave Velocity Structure of Central Myanmar via a Joint<br>Inversion of <i>P</i> -Wave Polarizations and Receiver Functions. Seismological Research Letters,<br>2022, 93, 1710-1720. | 1.9  | 4         |
| 3  | Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust. Natural Hazards and<br>Earth System Sciences, 2022, 22, 1665-1682.                                                                       | 3.6  | 4         |
| 4  | Slab Models Beneath Central Myanmar Revealed by a Joint Inversion of Regional and Teleseismic<br>Traveltime Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020164.                                 | 3.4  | 19        |
| 5  | Building the Himalaya from tectonic to earthquake scales. Nature Reviews Earth & Environment, 2021, 2, 251-268.                                                                                                           | 29.7 | 53        |
| 6  | New insights into the structural heterogeneity and geodynamics of the Indo-Burma subduction zone from ambient noise tomography. Earth and Planetary Science Letters, 2021, 562, 116856.                                   | 4.4  | 14        |
| 7  | Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 2021, 14, 321-326.                                                                                                                  | 12.9 | 46        |
| 8  | Geometry of the Décollement Below Eastern Bangladesh and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021519.                                                         | 3.4  | 12        |
| 9  | A Unified Framework for Earthquake Sequences and the Growth of Geological Structure in<br>Foldâ€Thrust Belts. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022045.                                     | 3.4  | 8         |
| 10 | Localized extension in megathrust hanging wall following great earthquakes in western Nepal.<br>Scientific Reports, 2021, 11, 21521.                                                                                      | 3.3  | 4         |
| 11 | Constraints on the shallow deformation around the Main Frontal Thrust in central Nepal from refraction velocities. Tectonophysics, 2020, 777, 228366.                                                                     | 2.2  | 4         |
| 12 | Subduction initiation and the rise of the Shillong Plateau. Earth and Planetary Science Letters, 2020, 543, 116351.                                                                                                       | 4.4  | 21        |
| 13 | Earthquake Cycles in Faultâ€Bend Folds. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018557.                                                                                                           | 3.4  | 25        |
| 14 | Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nature Geoscience, 2019, 12, 935-939.                                                                                                   | 12.9 | 106       |
| 15 | Active Convergence of the Indiaâ€Burmaâ€Sunda Plates Revealed by a New Continuous GPS Network.<br>Journal of Geophysical Research: Solid Earth, 2019, 124, 3155-3171.                                                     | 3.4  | 55        |
| 16 | Physics-Based Scenario of Earthquake Cycles on the Ventura Thrust System, California: The Effect of<br>Variable Friction and Fault Geometry. Pure and Applied Geophysics, 2019, 176, 3993-4007.                           | 1.9  | 16        |
| 17 | A 3â€Ð Shear Wave Velocity Model for Myanmar Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 504-526.                                                                                                    | 3.4  | 38        |
| 18 | Can the Updip Limit of Frictional Locking on Megathrusts Be Detected Geodetically? Quantifying the<br>Effect of Stress Shadows on Nearâ€Trench Coupling. Geophysical Research Letters, 2018, 45, 4754-4763.               | 4.0  | 43        |

JUDITH A HUBBARD

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting. Earth and Planetary Science Letters, 2018, 494, 216-225.                                                                                       | 4.4 | 22        |
| 20 | Oblique Thrusting and Strain Partitioning in the Longmen Shan Foldâ€andâ€Thrust Belt, Eastern Tibetan<br>Plateau. Journal of Geophysical Research: Solid Earth, 2018, 123, 4431-4453.                                                                 | 3.4 | 25        |
| 21 | Structural Control on Downdip Locking Extent of the Himalayan Megathrust. Journal of Geophysical<br>Research: Solid Earth, 2018, 123, 5265-5278.                                                                                                      | 3.4 | 49        |
| 22 | Building Objective 3D Fault Representations in Active Tectonic Settings. Seismological Research<br>Letters, 2017, 88, 831-839.                                                                                                                        | 1.9 | 11        |
| 23 | Re-evaluating seismic hazard along the southern Longmen Shan, China: Insights from the 1970 Dayi and 2013 Lushan earthquakes. Tectonophysics, 2017, 717, 519-530.                                                                                     | 2.2 | 20        |
| 24 | The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology, 2016, 44, 875-878.                                                                                                                                    | 4.4 | 83        |
| 25 | Threeâ€dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical<br>Research: Solid Earth, 2016, 121, 1007-1022.                                                                                                     | 3.4 | 65        |
| 26 | Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology, 2016, 44, 639-642.                                                                                                                                    | 4.4 | 148       |
| 27 | The 2012 <i>M</i> <sub><i>w</i></sub> 8.6 Wharton Basin sequence: A cascade of great earthquakes<br>generated by nearâ€orthogonal, young, oceanic mantle faults. Journal of Geophysical Research: Solid<br>Earth, 2015, 120, 3723-3747.               | 3.4 | 85        |
| 28 | Paleoseismologic evidence for large-magnitude (M <sub>w</sub> 7.5–8.0) earthquakes on the Ventura<br>blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern<br>California. , 2015, 11, 1629-1650.              |     | 20        |
| 29 | Coseismic slip on shallow décollement megathrusts: implications for seismic and tsunami hazard.<br>Earth-Science Reviews, 2015, 141, 45-55.                                                                                                           | 9.1 | 64        |
| 30 | Structure and Seismic Hazard of the Ventura Avenue Anticline and Ventura Fault, California: Prospect<br>for Large, Multisegment Ruptures in the Western Transverse Ranges. Bulletin of the Seismological<br>Society of America, 2014, 104, 1070-1087. | 2.3 | 50        |
| 31 | The 2013 Lushan earthquake: Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin, China. Geology, 2014, 42, 915-918.                                                                                           | 4.4 | 69        |
| 32 | Active Fault-Related Folding beneath an Alluvial Terrace in the Southern Longmen Shan Range Front,<br>Sichuan Basin, China: Implications for Seismic Hazard. Bulletin of the Seismological Society of<br>America, 2013, 103, 2369-2385.               | 2.3 | 36        |
| 33 | 3-D geomechanical restoration and paleomagnetic analysis of fault-related folds: An example from the<br>Yanjinggou anticline, southern Sichuan Basin. Journal of Structural Geology, 2013, 54, 199-214.                                               | 2.3 | 15        |
| 34 | Applying Wedge Theory to Dynamic Rupture Modeling of Fault Junctions. Bulletin of the Seismological<br>Society of America, 2012, 102, 1693-1711.                                                                                                      | 2.3 | 16        |
| 35 | Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake. Bulletin of the Seismological<br>Society of America, 2010, 100, 2713-2735.                                                                                                         | 2.3 | 155       |
| 36 | Structural interpretation of the coseismic faults of the Wenchuan earthquake: Threeâ€dimensional<br>modeling of the Longmen Shan foldâ€andâ€thrust belt. Journal of Geophysical Research, 2010, 115, .                                                | 3.3 | 68        |

| #  | Article                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan<br>earthquake, China. Geology, 2009, 37, 515-518. | 4.4  | 700       |
| 38 | Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature, 2009, 458, 194-197.                      | 27.8 | 507       |
| 39 | The Forced van der Pol Equation II: Canards in the Reduced System. SIAM Journal on Applied Dynamical Systems, 2003, 2, 570-608.              | 1.6  | 68        |