Judith A Hubbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171591/publications.pdf

Version: 2024-02-01

39 papers 2,751 citations

304743 22 h-index 315739 38 g-index

41 all docs

41 docs citations

41 times ranked

2090 citing authors

#	Article	IF	CITATIONS
1	Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 2009, 37, 515-518.	4.4	700
2	Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan ($M = 7.9$) earthquake. Nature, 2009, 458, 194-197.	27.8	507
3	Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2713-2735.	2.3	155
4	Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology, 2016, 44, 639-642.	4.4	148
5	Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nature Geoscience, 2019, 12, 935-939.	12.9	106
6	The 2012 <i>M</i> _{<i>w</i>} 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by nearâ€orthogonal, young, oceanic mantle faults. Journal of Geophysical Research: Solid Earth, 2015, 120, 3723-3747.	3.4	85
7	The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology, 2016, 44, 875-878.	4.4	83
8	The 2013 Lushan earthquake: Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin, China. Geology, 2014, 42, 915-918.	4.4	69
9	The Forced van der Pol Equation II: Canards in the Reduced System. SIAM Journal on Applied Dynamical Systems, 2003, 2, 570-608.	1.6	68
10	Structural interpretation of the coseismic faults of the Wenchuan earthquake: Threeâ€dimensional modeling of the Longmen Shan foldâ€andâ€thrust belt. Journal of Geophysical Research, 2010, 115, .	3.3	68
11	Threeâ€dimensional seismic velocity structure in the Sichuan basin, China. Journal of Geophysical Research: Solid Earth, 2016, 121, 1007-1022.	3.4	65
12	Coseismic slip on shallow d \tilde{A} @collement megathrusts: implications for seismic and tsunami hazard. Earth-Science Reviews, 2015, 141, 45-55.	9.1	64
13	Active Convergence of the Indiaâ€Burmaâ€Sunda Plates Revealed by a New Continuous GPS Network. Journal of Geophysical Research: Solid Earth, 2019, 124, 3155-3171.	3.4	55
14	Building the Himalaya from tectonic to earthquake scales. Nature Reviews Earth & Environment, 2021, 2, 251-268.	29.7	53
15	Structure and Seismic Hazard of the Ventura Avenue Anticline and Ventura Fault, California: Prospect for Large, Multisegment Ruptures in the Western Transverse Ranges. Bulletin of the Seismological Society of America, 2014, 104, 1070-1087.	2.3	50
16	Structural Control on Downdip Locking Extent of the Himalayan Megathrust. Journal of Geophysical Research: Solid Earth, 2018, 123, 5265-5278.	3.4	49
17	Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 2021, 14, 321-326.	12.9	46
18	Can the Updip Limit of Frictional Locking on Megathrusts Be Detected Geodetically? Quantifying the Effect of Stress Shadows on Near†Trench Coupling. Geophysical Research Letters, 2018, 45, 4754-4763.	4.0	43

#	Article	IF	CITATIONS
19	A 3â€D Shear Wave Velocity Model for Myanmar Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 504-526.	3.4	38
20	Active Fault-Related Folding beneath an Alluvial Terrace in the Southern Longmen Shan Range Front, Sichuan Basin, China: Implications for Seismic Hazard. Bulletin of the Seismological Society of America, 2013, 103, 2369-2385.	2.3	36
21	Oblique Thrusting and Strain Partitioning in the Longmen Shan Foldâ€andâ€Thrust Belt, Eastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2018, 123, 4431-4453.	3.4	25
22	Earthquake Cycles in Faultâ€Bend Folds. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018557.	3.4	25
23	Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting. Earth and Planetary Science Letters, 2018, 494, 216-225.	4.4	22
24	Subduction initiation and the rise of the Shillong Plateau. Earth and Planetary Science Letters, 2020, 543, 116351.	4.4	21
25	Paleoseismologic evidence for large-magnitude (M _w 7.5–8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California. , 2015, 11, 1629-1650.		20
26	Re-evaluating seismic hazard along the southern Longmen Shan, China: Insights from the 1970 Dayi and 2013 Lushan earthquakes. Tectonophysics, 2017, 717, 519-530.	2.2	20
27	Slab Models Beneath Central Myanmar Revealed by a Joint Inversion of Regional and Teleseismic Traveltime Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020164.	3.4	19
28	Applying Wedge Theory to Dynamic Rupture Modeling of Fault Junctions. Bulletin of the Seismological Society of America, 2012, 102, 1693-1711.	2.3	16
29	Physics-Based Scenario of Earthquake Cycles on the Ventura Thrust System, California: The Effect of Variable Friction and Fault Geometry. Pure and Applied Geophysics, 2019, 176, 3993-4007.	1.9	16
30	3-D geomechanical restoration and paleomagnetic analysis of fault-related folds: An example from the Yanjinggou anticline, southern Sichuan Basin. Journal of Structural Geology, 2013, 54, 199-214.	2.3	15
31	New insights into the structural heterogeneity and geodynamics of the Indo-Burma subduction zone from ambient noise tomography. Earth and Planetary Science Letters, 2021, 562, 116856.	4.4	14
32	Geometry of the Décollement Below Eastern Bangladesh and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021519.	3.4	12
33	Building Objective 3D Fault Representations in Active Tectonic Settings. Seismological Research Letters, 2017, 88, 831-839.	1.9	11
34	A Unified Framework for Earthquake Sequences and the Growth of Geological Structure in Foldâ€Thrust Belts. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022045.	3 . 4	8
35	Constraints on the shallow deformation around the Main Frontal Thrust in central Nepal from refraction velocities. Tectonophysics, 2020, 777, 228366.	2.2	4
36	Localized extension in megathrust hanging wall following great earthquakes in western Nepal. Scientific Reports, 2021, 11, 21521.	3.3	4

#	Article	IF	CITATIONS
37	Imaging the Upper $10\text{\^{A}}$ km Crustal Shear-Wave Velocity Structure of Central Myanmar via a Joint Inversion of <i>P</i> -Wave Polarizations and Receiver Functions. Seismological Research Letters, 2022, 93, 1710-1720.	1.9	4
38	Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust. Natural Hazards and Earth System Sciences, 2022, 22, 1665-1682.	3.6	4
39	The Role of Frontal Thrusts in Tsunami Earthquake Generation. Bulletin of the Seismological Society of America, 2022, 112, 680-694.	2.3	3