Cheryl A Kerfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7170482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UV Excitation of Carotenoid Binding Proteins OCP and HCP: Excitedâ€6tate Dynamics and Product Formation. ChemPhotoChem, 2022, 6, .	3.0	2
2	Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24
3	BMC Caller: a webtool to identify and analyze bacterial microcompartment types in sequence data. Biology Direct, 2022, 17, 9.	4.6	8
4	Atypical Carboxysome Loci: JEEPs or Junk?. Frontiers in Microbiology, 2022, 13, .	3.5	0
5	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
6	Bioenergetics Theory and Components The Shells of Bacterial Microcompartments. , 2021, , 108-122.		0
7	Validation of an insertion-engineered isoprene synthase as a strategy to functionalize terpene synthases. RSC Advances, 2021, 11, 29997-30005.	3.6	1
8	A Survey of Bacterial Microcompartment Distribution in the Human Microbiome. Frontiers in Microbiology, 2021, 12, 669024.	3.5	5
9	Clues to the function of bacterial microcompartments from ancillary genes. Biochemical Society Transactions, 2021, 49, 1085-1098.	3.4	1
10	A catalog of the diversity and ubiquity of bacterial microcompartments. Nature Communications, 2021, 12, 3809.	12.8	55
11	Liposome-based measurement of light-driven chloride transport kinetics of halorhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183637.	2.6	4
12	Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Current Opinion in Microbiology, 2021, 63, 1-9.	5.1	27
13	Integrated Structural Studies for Elucidating Carotenoid-Protein Interactions. Advances in Experimental Medicine and Biology, 2021, , .	1.6	1
14	Cyanobacterial carboxysomes contain an unique rubiscoâ€activaseâ€like protein. New Phytologist, 2020, 225, 793-806.	7.3	29
15	Redox Characterization of Electrode-Immobilized Bacterial Microcompartment Shell Proteins Engineered To Bind Metal Centers. ACS Applied Bio Materials, 2020, 3, 685-692.	4.6	9
16	Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148120.	1.0	22
17	Visualizing in Vivo Dynamics of Designer Nanoscaffolds. Nano Letters, 2020, 20, 208-217.	9.1	9
18	Structural analysis of a new carotenoid-binding protein: the C-terminal domain homolog of the OCP. Scientific Reports, 2020, 10, 15564.	3.3	18

#	Article	IF	CITATIONS
19	Engineered bacterial microcompartments: apps for programming metabolism. Current Opinion in Biotechnology, 2020, 65, 225-232.	6.6	20
20	Binding Options for the Small Subunit-Like Domain of Cyanobacteria to Rubisco. Frontiers in Microbiology, 2020, 11, 187.	3.5	2
21	Ubiquity and functional uniformity in CO2 concentrating mechanisms in multiple phyla of <i>Bacteria</i> is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters. FEMS Microbiology Letters, 2020, 367, .	1.8	10
22	Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. Journal of Physical Chemistry B, 2020, 124, 4896-4905.	2.6	14
23	Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering. BMC Biology, 2019, 17, 79.	3.8	32
24	A designed bacterial microcompartment shell with tunable composition and precision cargo loading. Metabolic Engineering, 2019, 54, 286-291.	7.0	42
25	Structural Characterization of a Synthetic Tandem-Domain Bacterial Microcompartment Shell Protein Capable of Forming Icosahedral Shell Assemblies. ACS Synthetic Biology, 2019, 8, 668-674.	3.8	24
26	Structural and spectroscopic characterization of HCP2. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 414-424.	1.0	21
27	Engineering the orange carotenoid protein for applications in synthetic biology. Current Opinion in Structural Biology, 2019, 57, 110-117.	5.7	14
28	X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. Journal of Biological Chemistry, 2019, 294, 8848-8860.	3.4	25
29	The Plasticity of Molecular Interactions Governs Bacterial Microcompartment Shell Assembly. Structure, 2019, 27, 749-763.e4.	3.3	50
30	Glycyl Radical Enzyme-Associated Microcompartments: Redox-Replete Bacterial Organelles. MBio, 2019, 10, .	4.1	30
31	Structure of a Synthetic <i>β</i> -Carboxysome Shell. Plant Physiology, 2019, 181, 1050-1058.	4.8	54
32	Heterohexamers Formed by CcmK3 and CcmK4 Increase the Complexity of Beta Carboxysome Shells. Plant Physiology, 2019, 179, 156-167.	4.8	61
33	Functionalization of Bacterial Microcompartment Shell Proteins With Covalently Attached Heme. Frontiers in Bioengineering and Biotechnology, 2019, 7, 432.	4.1	17
34	Characterization of Novel Homologs to the Câ€ŧerminal Domain of the Orange Carotenoid Protein. FASEB Journal, 2019, 33, 779.45.	0.5	1
35	Genomes of ubiquitous marine and hypersaline <i>Hydrogenovibrio</i> , <i>Thiomicrorhabdus</i> and <i>Thiomicrospira</i> spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. Environmental Microbiology, 2018, 20, 2686-2708.	3.8	32
36	Bacterial microcompartments. Nature Reviews Microbiology, 2018, 16, 277-290.	28.6	328

#	Article	IF	CITATIONS
37	Fluorescence and Excited-State Conformational Dynamics of the Orange Carotenoid Protein. Journal of Physical Chemistry B, 2018, 122, 1792-1800.	2.6	14
38	Engineering nanoreactors using bacterial microcompartment architectures. Current Opinion in Biotechnology, 2018, 51, 1-7.	6.6	55
39	In Vitro Assembly of Diverse Bacterial Microcompartment Shell Architectures. Nano Letters, 2018, 18, 7030-7037.	9.1	61
40	Light-Driven Chloride Transport Kinetics of Halorhodopsin. Biophysical Journal, 2018, 115, 353-360.	0.5	9
41	Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nature Communications, 2018, 9, 2881.	12.8	92
42	Structural and functional insights into the unique CBS–CP12 fusion protein family in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7141-7146.	7.1	20
43	Free-electron laser data for multiple-particle fluctuation scattering analysis. Scientific Data, 2018, 5, 180201.	5.3	6
44	Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. Current Opinion in Plant Biology, 2017, 37, 1-9.	7.1	60
45	β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. Journal of Experimental Botany, 2017, 68, 3841-3855.	4.8	36
46	Synthetic <scp>OCP</scp> heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection. Plant Journal, 2017, 91, 646-656.	5.7	33
47	Connecting Earth observation to high-throughput biodiversity data. Nature Ecology and Evolution, 2017, 1, 176.	7.8	156
48	Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science, 2017, 356, 1293-1297.	12.6	187
49	In Vitro Characterization and Concerted Function of Three Core Enzymes of a Glycyl Radical Enzyme - Associated Bacterial Microcompartment. Scientific Reports, 2017, 7, 42757.	3.3	51
50	Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment. Biochemistry, 2017, 56, 5679-5690.	2.5	4
51	Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytologist, 2017, 215, 937-951.	7.3	87
52	Carboxysomes: metabolic modules for CO2 fixation. FEMS Microbiology Letters, 2017, 364, .	1.8	86
53	A bioarchitectonic approach to the modular engineering of metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160387.	4.0	16
54	Raman Optical Activity Reveals Carotenoid Photoactivation Events in the Orange Carotenoid Protein in Solution. Journal of the American Chemical Society, 2017, 139, 10456-10460.	13.7	38

#	Article	lF	CITATIONS
55	Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nature Plants, 2017, 3, 17089.	9.3	70
56	David W. Krogmann, 1931–2016. Photosynthesis Research, 2017, 132, 1-12.	2.9	7
57	Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Frontiers in Microbiology, 2017, 8, 1441.	3.5	57
58	Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Molecular Plant, 2016, 9, 1379-1394.	8.3	83
59	Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants, 2016, 2, 16180.	9.3	166
60	Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium <i>Anabaena</i> sp. PCC 7120. Plant Physiology, 2016, 171, 1852-1866.	4.8	76
61	Assembly, function and evolution of cyanobacterial carboxysomes. Current Opinion in Plant Biology, 2016, 31, 66-75.	7.1	197
62	Interrelated modules in cyanobacterial photosynthesis: the carbon-concentrating mechanism, photorespiration, and light perception. Journal of Experimental Botany, 2016, 67, 2931-2940.	4.8	19
63	Rewiring Escherichia coli for carbon-dioxide fixation. Nature Biotechnology, 2016, 34, 1035-1036.	17.5	12
64	Protein Nanotubes: Purification and Characterization of Protein Nanotubes Assembled from a Single Bacterial Microcompartment Shell Subunit (Adv. Mater. Interfaces 1/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0
65	Biochemical characterization of predicted Precambrian RuBisCO. Nature Communications, 2016, 7, 10382.	12.8	112
66	Bacterial microcompartments as metabolic modules for plant synthetic biology. Plant Journal, 2016, 87, 66-75.	5.7	32
67	Cyanobacterial ultrastructure in light of genomic sequence data. Photosynthesis Research, 2016, 129, 147-157.	2.9	42
68	Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy. Nano Letters, 2016, 16, 1590-1595.	9.1	106
69	Purification and Characterization of Protein Nanotubes Assembled from a Single Bacterial Microcompartment Shell Subunit. Advanced Materials Interfaces, 2016, 3, 1500295.	3.7	38
70	Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster. Journal of the American Chemical Society, 2016, 138, 5262-5270.	13.7	58
71	Production and Characterization of Synthetic Carboxysome Shells with Incorporated Luminal Proteins. Plant Physiology, 2016, 170, 1868-77.	4.8	64
72	The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle. PLoS Biology, 2016, 14, e1002399.	5.6	40

#	Article	IF	CITATIONS
73	Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ. Scientific Reports, 2015, 5, 16243.	3.3	45
74	Plugâ€andâ€play for improving primary productivity. American Journal of Botany, 2015, 102, 1949-1950.	1.7	8
75	Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component. Life, 2015, 5, 1141-1171.	2.4	82
76	Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria. Photosynthesis Research, 2015, 126, 99-109.	2.9	18
77	A 12 Ã carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science, 2015, 348, 1463-1466.	12.6	192
78	Operational properties of fluctuation X-ray scattering data. IUCrJ, 2015, 2, 309-316.	2.2	21
79	Bioinformatic Characterization of Clycyl Radical Enzyme-Associated Bacterial Microcompartments. Applied and Environmental Microbiology, 2015, 81, 8315-8329.	3.1	59
80	Bacterial microcompartment assembly: The key role of encapsulation peptides. Communicative and Integrative Biology, 2015, 8, e1039755.	1.4	77
81	Streamlined Construction of the Cyanobacterial CO ₂ -Fixing Organelle via Protein Domain Fusions for Use in Plant Synthetic Biology. Plant Cell, 2015, 27, 2637-2644.	6.6	49
82	Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5567-74.	7.1	121
83	Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology, 2015, 23, 22-34.	7.7	165
84	Engineering Bacterial Microcompartment Shells: Chimeric Shell Proteins and Chimeric Carboxysome Shells. ACS Synthetic Biology, 2015, 4, 444-453.	3.8	88
85	Bayesian Analysis of Congruence of Core Genes in Prochlorococcus and Synechococcus and Implications on Horizontal Gene Transfer. PLoS ONE, 2014, 9, e85103.	2.5	12
86	Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genomics, 2014, 15, 977.	2.8	175
87	A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method. PLoS Computational Biology, 2014, 10, e1003898.	3.2	227
88	Introduction of a Synthetic CO2-fixing Photorespiratory Bypass into a Cyanobacterium. Journal of Biological Chemistry, 2014, 289, 9493-9500.	3.4	87
89	Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the N- and C-Terminal Domains in Cyanobacterial Photoprotection Â. Plant Cell, 2014, 26, 426-437.	6.6	114
90	Specificity of the Cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures À Â. Plant Physiology, 2014, 164, 790-804.	4.8	30

#	Article	IF	CITATIONS
91	Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides. Applied and Environmental Microbiology, 2014, 80, 2193-2205.	3.1	124
92	Assembly of Robust Bacterial Microcompartment Shells Using Building Blocks from an Organelle of Unknown Function. Journal of Molecular Biology, 2014, 426, 2217-2228.	4.2	102
93	Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME Journal, 2013, 7, 2178-2191.	9.8	217
94	Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. Photosynthesis Research, 2013, 118, 9-16.	2.9	42
95	Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway. Cell, 2013, 155, 1131-1140.	28.9	274
96	Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 248-254.	1.0	57
97	Structural, Mechanistic and Genomic Insights into OCP-Mediated Photoprotection. Advances in Botanical Research, 2013, 65, 1-26.	1.1	14
98	Cyanobacterial-based approaches to improving photosynthesis in plants. Journal of Experimental Botany, 2013, 64, 787-798.	4.8	121
99	Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides. Chemistry and Biology, 2013, 20, 1033-1043.	6.0	90
100	The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochemical and Photobiological Sciences, 2013, 12, 1135-1143.	2.9	162
101	Comparative Analysis of 126 Cyanobacterial Genomes Reveals Evidence of Functional Diversity Among Homologs of the Redox-Regulated CP12 Protein Â. Plant Physiology, 2013, 161, 824-835.	4.8	47
102	Evidence for the widespread distribution of CRISPR-Cas system in the Phylum <i>Cyanobacteria</i> . RNA Biology, 2013, 10, 687-693.	3.1	86
103	Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO ₂ Fixation. Chemical Reviews, 2013, 113, 6621-6658.	47.7	1,786
104	Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1053-1058.	7.1	769
105	The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases. BMC Structural Biology, 2013, 13, 28.	2.3	11
106	The Structure of CcmP, a Tandem Bacterial Microcompartment Domain Protein from the β-Carboxysome, Forms a Subcompartment Within a Microcompartment. Journal of Biological Chemistry, 2013, 288, 16055-16063.	3.4	104
107	Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10022-10027.	7.1	102
108	Isolation and Characterization of the Prochlorococcus Carboxysome Reveal the Presence of the Novel Shell Protein CsoS1D. Journal of Bacteriology, 2012, 194, 787-795.	2.2	67

#	Article	IF	CITATIONS
109	Elucidating Essential Role of Conserved Carboxysomal Protein CcmN Reveals Common Feature of Bacterial Microcompartment Assembly. Journal of Biological Chemistry, 2012, 287, 17729-17736.	3.4	140
110	The Essential Role of the N-Terminal Domain of the Orange Carotenoid Protein in Cyanobacterial Photoprotection: Importance of a Positive Charge for Phycobilisome Binding. Plant Cell, 2012, 24, 1972-1983.	6.6	82
111	The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 158-166.	1.0	171
112	Bioinformatic Identification and Structural Characterization of a New Carboxysome Shell Protein. Advances in Photosynthesis and Respiration, 2012, , 345-356.	1.0	6
113	Photoprotection in Cyanobacteria: The Orange Carotenoid Protein and Energy Dissipation. , 2011, , 395-421.		4
114	Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 30-35.	1.0	36
115	Comparative analysis of carboxysome shell proteins. Photosynthesis Research, 2011, 109, 21-32.	2.9	112
116	Using BLAST to Teach "E-value-tionary―Concepts. PLoS Biology, 2011, 9, e1001014.	5.6	58
117	Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 382-392.	2.3	109
118	Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum. PLoS Biology, 2010, 8, e1000448.	5.6	54
119	Bacterial Microcompartments. Annual Review of Microbiology, 2010, 64, 391-408.	7.3	299
120	Structural Determinants Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria. Journal of Biological Chemistry, 2010, 285, 18364-18375.	3.4	152
121	Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport. Journal of Molecular Biology, 2009, 392, 319-333.	4.2	193
122	Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Reviews Microbiology, 2008, 6, 681-691.	28.6	421
123	Atomic-Level Models of the Bacterial Carboxysome Shell. Science, 2008, 319, 1083-1086.	12.6	367
124	A photoactive carotenoid protein acting as light intensity sensor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12075-12080.	7.1	324
125	Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome. PLoS Biology, 2007, 5, e144.	5.6	145
126	The Undergraduate Genomics Research Initiative. PLoS Biology, 2007, 5, e141.	5.6	23

#	Article	IF	CITATIONS
127	Light-Induced Energy Dissipation in Iron-Starved Cyanobacteria: Roles of OCP and IsiA Proteins. Plant Cell, 2007, 19, 656-672.	6.6	134
128	Structure of the RuBisCO chaperone RbcX from <i>Synechocystis</i> sp. PCC6803. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1109-1112.	2.5	16
129	A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria. Plant Cell, 2006, 18, 992-1007.	6.6	396
130	The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biology, 2006, 4, e383.	5.6	144
131	The Structure of β-Carbonic Anhydrase from the Carboxysomal Shell Reveals a Distinct Subclass with One Active Site for the Price of Two. Journal of Biological Chemistry, 2006, 281, 7546-7555.	3.4	159
132	Protein Structures Forming the Shell of Primitive Bacterial Organelles. Science, 2005, 309, 936-938.	12.6	420
133	Spectroscopic Properties of the Carotenoid 3â€ ⁻ -Hydroxyechinenone in the Orange Carotenoid Protein from the CyanobacteriumArthrospira maximaâ€. Biochemistry, 2005, 44, 3994-4003.	2.5	124
134	Structure and Function of the Water-Soluble Carotenoid-Binding Proteins of Cyanobacteria. Photosynthesis Research, 2004, 81, 215-225.	2.9	73
135	Water-soluble carotenoid proteins of cyanobacteria. Archives of Biochemistry and Biophysics, 2004, 430, 2-9.	3.0	71
136	The 1.6ÂÃ resolution structure of Fe-superoxide dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus. Journal of Biological Inorganic Chemistry, 2003, 8, 707-714.	2.6	25
137	The Crystal Structure of a Cyanobacterial Water-Soluble Carotenoid Binding Protein. Structure, 2003, 11, 55-65.	3.3	267
138	Structural and EPR Characterization of the Soluble Form of Cytochrome c-550 and of the psbV2 Gene Product from the Cyanobacterium Thermosynechococcus elongatus. Plant and Cell Physiology, 2003, 44, 697-706.	3.1	39
139	Structure of cytochromec6fromArthrospira maxima: an assembly of 24 subunits in a nearly symmetric shell. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1104-1110.	2.5	4
140	Structures of Cytochrome c-549 and Cytochrome c6 from the Cyanobacterium Arthrospira maxima,. Biochemistry, 2001, 40, 9215-9225.	2.5	65
141	Crystal Structure and Possible Dimerization of the High-Potential Ironâ^'Sulfur Protein fromChromatiumpurpuratumâ€,‡. Biochemistry, 1998, 37, 13911-13917.	2.5	32
142	PHOTOSYNTHETIC CYTOCHROMEScIN CYANOBACTERIA, ALGAE, AND PLANTS. Annual Review of Plant Biology, 1998, 49, 397-425.	14.3	93
143	Structural comparison of cytochrome c2and cytochrome c6. Photosynthesis Research, 1997, 54, 81-98.	2.9	8
144	Crystals of the Carotenoid Protein fromArthrospira maximaContaining Uniformly Oriented Pigment Molecules. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 720-723.	2.5	15

#	Article	IF	CITATIONS
145	Crystallization of two integral membrane pigment–protein complexes from the purpleâ€sulfur bacterium <i>Chromatium purpuratum</i> . Protein Science, 1993, 2, 1352-1355.	7.6	4
146	Light harvesting in photosystems I and II. Biochemical Society Transactions, 1993, 21, 15-18.	3.4	42
147	The use of non-denaturing Deriphat-polyacrylamide gel electrophoresis to fractionate pigment-protein complexes of purple bacteria. Photosynthesis Research, 1991, 30, 139-143.	2.9	8