Ruben Nogueiras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7170069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	6.5	810
2	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	30.7	581
3	Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews, 2012, 92, 1479-1514.	28.8	551
4	A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nature Chemical Biology, 2009, 5, 749-757.	8.0	512
5	Changes in Hypothalamic KiSS-1 System and Restoration of Pubertal Activation of the Reproductive Axis by Kisspeptin in Undernutrition. Endocrinology, 2005, 146, 3917-3925.	2.8	475
6	Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell, 2013, 155, 172-187.	28.9	429
7	GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK. Diabetes, 2014, 63, 3346-3358.	0.6	422
8	Characterization of the Potent Luteinizing Hormone-Releasing Activity of KiSS-1 Peptide, the Natural Ligand of GPR54. Endocrinology, 2005, 146, 156-163.	2.8	412
9	Ghrelin action in the brain controls adipocyte metabolism. Journal of Clinical Investigation, 2006, 116, 1983-1993.	8.2	397
10	Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 2014, 20, 41-53.	16.2	342
11	The central melanocortin system directly controls peripheral lipid metabolism. Journal of Clinical Investigation, 2007, 117, 3475-3488.	8.2	341
12	Effects of Obestatin on Energy Balance and Growth Hormone Secretion in Rodents. Endocrinology, 2007, 148, 21-26.	2.8	228
13	Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 2016, 12, 421-432.	9.6	227
14	Expression and Regulation of Adiponectin and Receptor in Human and Rat Placenta. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4276-4286.	3.6	203
15	Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance. Cell Reports, 2014, 9, 366-377.	6.4	195
16	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	16.2	167
17	Energy balance regulation by thyroid hormones at central level. Trends in Molecular Medicine, 2013, 19, 418-427.	6.7	164
18	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	14.8	164

#	Article	IF	CITATIONS
19	Expression of Ghrelin in the Cyclic and Pregnant Rat Ovary. Endocrinology, 2003, 144, 1594-1602.	2.8	155
20	Endocrine-disrupting chemicals and the regulation of energy balance. Nature Reviews Endocrinology, 2017, 13, 536-546.	9.6	152
21	Nicotine Induces Negative Energy Balance Through Hypothalamic AMP-Activated Protein Kinase. Diabetes, 2012, 61, 807-817.	0.6	147
22	Peripheral, but Not Central, CB1 Antagonism Provides Food Intake–Independent Metabolic Benefits in Diet-Induced Obese Rats. Diabetes, 2008, 57, 2977-2991.	0.6	145
23	Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity. Journal of Neuroscience, 2009, 29, 5916-5925.	3.6	144
24	Hypothalamic-autonomic control of energy homeostasis. Endocrine, 2015, 50, 276-291.	2.3	142
25	The <scp>l</scp> -α-Lysophosphatidylinositol/ <i>GPR55</i> System and Its Potential Role in Human Obesity. Diabetes, 2012, 61, 281-291.	0.6	134
26	The Central Sirtuin 1/p53 Pathway Is Essential for the Orexigenic Action of Ghrelin. Diabetes, 2011, 60, 1177-1185.	0.6	133
27	Thyroid hormones induce browning of white fat. Journal of Endocrinology, 2017, 232, 351-362.	2.6	126
28	The brain and brown fat. Annals of Medicine, 2015, 47, 150-168.	3.8	124
29	Regulation of Growth Hormone Secretagogue Receptor Gene Expression in the Arcuate Nuclei of the Rat by Leptin and Ghrelin. Diabetes, 2004, 53, 2552-2558.	0.6	122
30	Novel Expression and Direct Effects of Adiponectin in the Rat Testis. Endocrinology, 2008, 149, 3390-3402.	2.8	122
31	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	3.6	120
32	The Opioid System and Food Intake: Homeostatic and Hedonic Mechanisms. Obesity Facts, 2012, 5, 196-207.	3.4	116
33	The Cannabinoid Receptor 2 Is Critical for the Host Response to Sepsis. Journal of Immunology, 2009, 183, 499-505.	0.8	113
34	Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB Journal, 2010, 24, 2670-2679.	0.5	108
35	Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metabolism, 2017, 25, 1390-1399.e6.	16.2	106
36	<i>Central Nervous System Regulation of Energy Metabolism</i> . Annals of the New York Academy of Sciences, 2008, 1126, 14-19.	3.8	105

#	Article	IF	CITATIONS
37	A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. Journal of Endocrinology, 2011, 211, 177-185.	2.6	104
38	Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology, 2008, 149, 4534-4543.	2.8	102
39	A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance. Cell Reports, 2016, 16, 2231-2242.	6.4	102
40	A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia, 2005, 48, 140-148.	6.3	101
41	Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PLoS ONE, 2012, 7, e46923.	2.5	101
42	Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation. PLoS ONE, 2011, 6, e20571.	2.5	101
43	Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors. Journal of Cell Science, 2004, 117, 3247-3257.	2.0	99
44	A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports, 2010, 11, 226-232.	4.5	97
45	Regulation of Resistin by Gonadal, Thyroid Hormone, and Nutritional Status. Obesity, 2003, 11, 408-414.	4.0	94
46	Ghrelin, obesity and diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 705-712.	2.8	94
47	Central Ghrelin Regulates Peripheral Lipid Metabolism in a Growth Hormone-Independent Fashion. Endocrinology, 2009, 150, 4562-4574.	2.8	94
48	Central administration of resistin promotes short-term satiety in rats. European Journal of Endocrinology, 2005, 153, R1-R5.	3.7	93
49	Hypothalamic mTOR pathway mediates thyroid hormoneâ€induced hyperphagia in hyperthyroidism. Journal of Pathology, 2012, 227, 209-222.	4.5	93
50	Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends in Neurosciences, 2017, 40, 167-180.	8.6	92
51	Hypothalamic Control of Lipid Metabolism: Focus on Leptin, Ghrelin and Melanocortins. Neuroendocrinology, 2011, 94, 1-11.	2.5	90
52	Reduction of Hypothalamic Endoplasmic Reticulum Stress Activates Browning of White Fat and Ameliorates Obesity. Diabetes, 2017, 66, 87-99.	0.6	90
53	Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nature Neuroscience, 2010, 13, 877-882.	14.8	86
54	CNS Leptin Action Modulates Immune Response and Survival in Sepsis. Journal of Neuroscience, 2010, 30, 6036-6047.	3.6	86

#	Article	IF	CITATIONS
55	SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nature Communications, 2018, 9, 4194.	12.8	84
56	Effect of Food Restriction on Ghrelin in Normalâ€Cycling Female Rats and in Pregnancy. Obesity, 2002, 10, 682-687.	4.0	83
57	Resistin is expressed in different rat tissues and is regulated in a tissue―and genderâ€specific manner. FEBS Letters, 2003, 548, 21-27.	2.8	83
58	Hypothalamic mTOR: The Rookie Energy Sensor. Current Molecular Medicine, 2014, 14, 3-21.	1.3	82
59	Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Molecular and Cellular Endocrinology, 2016, 438, 107-115.	3.2	80
60	Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways. Gastroenterology, 2013, 144, 636-649.e6.	1.3	79
61	Nicotine Improves Obesity and Hepatic Steatosis and ER Stress in Diet-Induced Obese Male Rats. Endocrinology, 2014, 155, 1679-1689.	2.8	79
62	κâ€Opioid receptors control the metabolic response to a highâ€energy diet in mice. FASEB Journal, 2010, 24, 1151-1159.	0.5	78
63	Dual action of adiponectin on insulin secretion in insulin-resistant mice. Biochemical and Biophysical Research Communications, 2004, 321, 154-160.	2.1	76
64	Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biology, 2017, 12, 854-863.	9.0	74
65	GOAT: the master switch for the ghrelin system?. European Journal of Endocrinology, 2010, 163, 1-8.	3.7	73
66	Irisin Levels During Pregnancy and Changes Associated With the Development of Preeclampsia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2113-2119.	3.6	73
67	Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. Journal of Physiology, 2006, 573, 237-249.	2.9	71
68	Chronic inflammation modulates ghrelin levels in humans and rats. British Journal of Rheumatology, 2003, 43, 306-310.	2.3	70
69	Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Reports, 2018, 25, 413-423.e5.	6.4	68
70	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metabolism, 2020, 31, 605-622.e10.	16.2	68
71	Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nature Metabolism, 2021, 3, 1071-1090.	11.9	67
72	Ghrelin and lipid metabolism: key partners in energy balance. Journal of Molecular Endocrinology, 2011, 46, R43-63.	2.5	65

#	Article	IF	CITATIONS
73	Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. Journal of Physiology, 2009, 587, 3573-3585.	2.9	61
74	Mice lacking Î′â€opioid receptors resist the development of dietâ€induced obesity. FASEB Journal, 2012, 26, 3483-3492.	0.5	61
75	p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO Journal, 2016, 35, 536-552.	7.8	61
76	Long-term effects of ghrelin and ghrelin receptor agonists on energy balance in rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E78-E84.	3.5	60
77	Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 350-361.	2.4	60
78	Ghrelin and food reward. Neuropharmacology, 2019, 148, 131-138.	4.1	59
79	The endocannabinoid system: Role in glucose and energy metabolism. Pharmacological Research, 2009, 60, 93-98.	7.1	56
80	Ghrelin Requires p53 to Stimulate Lipid Storage in Fat and Liver. Endocrinology, 2013, 154, 3671-3679.	2.8	56
81	MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.	12.8	54
82	Cellular Distribution and Regulation of Ghrelin Messenger Ribonucleic Acid in the Rat Pituitary Gland. Endocrinology, 2003, 144, 5089-5097.	2.8	53
83	Bsx, a Novel Hypothalamic Factor Linking Feeding with Locomotor Activity, Is Regulated by Energy Availability. Endocrinology, 2008, 149, 3009-3015.	2.8	52
84	Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends in Pharmacological Sciences, 2018, 39, 685-694.	8.7	52
85	Sensing the fat: Fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides, 2005, 26, 1753-1758.	2.4	51
86	Regulation of visceral adipose tissueâ€derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue. Journal of Physiology, 2009, 587, 3741-3750.	2.9	51
87	Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. DMM Disease Models and Mechanisms, 2014, 7, 129-41.	2.4	51
88	Obese patients with NASH have increased hepatic expression of SARS-CoV-2 critical entry points. Journal of Hepatology, 2021, 74, 469-471.	3.7	51
89	Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obesity Reviews, 2010, 11, 185-201.	6.5	50
90	Expression and regulation of chemerin during rat pregnancy. Placenta, 2012, 33, 373-378.	1.5	50

#	Article	IF	CITATIONS
91	Pregnancy Induces Resistance to the Anorectic Effect of Hypothalamic Malonyl-CoA and the Thermogenic Effect of Hypothalamic AMPK Inhibition in Female Rats. Endocrinology, 2015, 156, 947-960.	2.8	50
92	GPR55: a new promising target for metabolism?. Journal of Molecular Endocrinology, 2017, 58, R191-R202.	2.5	49
93	SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes, 2018, 67, 2213-2226.	0.6	48
94	Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Letters, 2021, 496, 72-83.	7.2	48
95	Hypothalamic effects of thyroid hormones on metabolism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 703-712.	4.7	47
96	Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets. Trends in Endocrinology and Metabolism, 2016, 27, 304-318.	7.1	47
97	Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways. Diabetes, 2016, 65, 421-432.	0.6	47
98	Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. International Journal of Obesity, 2007, 31, 371-377.	3.4	45
99	Serum chemerin levels during normal human pregnancy. Peptides, 2013, 42, 138-143.	2.4	45
100	Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte, 2015, 4, 141-145.	2.8	45
101	Hepatic p63 regulates steatosis via IKKβ/ER stress. Nature Communications, 2017, 8, 15111.	12.8	45
102	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	11.9	45
103	Orexin-A regulates growth hormone-releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth hormone-dependent fashion in the rat hypothalamus. European Journal of Neuroscience, 2004, 19, 2080-2088.	2.6	44
104	Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Molecular Metabolism, 2015, 4, 961-970.	6.5	44
105	Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nature Metabolism, 2019, 1, 811-829.	11.9	44
106	Central nervous system melanocortinâ€3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB Journal, 2010, 24, 862-872.	0.5	43
107	Brainâ€derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species. Clinical Endocrinology, 2014, 81, 141-151.	2.4	43
108	BIOMEDICINE: Separation of Conjoined Hormones Yields Appetite Rivals. Science, 2005, 310, 985-986.	12.6	42

#	Article	IF	CITATIONS
109	Chrelin localization in rat and human thyroid and parathyroid glands and tumours. Histochemistry and Cell Biology, 2006, 125, 239-246.	1.7	42
110	Deficiency of glucose-dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E350-E355.	3.5	42
111	Circulating Betatrophin Levels Are Increased in Anorexia and Decreased in Morbidly Obese Women. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1188-E1196.	3.6	42
112	The Lâ€Î±â€Łysophosphatidylinositol/G Protein–Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. Hepatology, 2021, 73, 606-624.	7.3	42
113	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	12.8	41
114	Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism. Cell Reports, 2019, 26, 3011-3026.e5.	6.4	41
115	Regulation of Peptide YY Levels by Age, Hormonal, and Nutritional Status. Obesity, 2004, 12, 1944-1950.	4.0	40
116	The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system. Molecular Biology of the Cell, 2011, 22, 4182-4191.	2.1	40
117	Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin. Neuropsychopharmacology, 2013, 38, 1296-1307.	5.4	40
118	Cooperative role of the glucagonâ€like peptideâ€1 receptor and β3â€adrenergicâ€mediated signalling on fat mass reduction through the downregulation of <scp>PKA</scp> / <scp>AKT</scp> / <scp>AMPK</scp> signalling in the adipose tissue and muscle of rats. Acta Physiologica, 2018, 222, e13008.	3.8	40
119	The atypical cannabinoid Oâ€1602 stimulates food intake and adiposity in rats. Diabetes, Obesity and Metabolism, 2012, 14, 234-243.	4.4	39
120	Female Nur77-Deficient Mice Show Increased Susceptibility to Diet-Induced Obesity. PLoS ONE, 2013, 8, e53836.	2.5	37
121	Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of AŸ-arrestins. Scientific Reports, 2016, 6, 22495.	3.3	37
122	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	12.8	36
123	Plasma ANGPTLâ€4 is Associated with Obesity and Glucose Tolerance: Cross‣ectional and Longitudinal Findings. Molecular Nutrition and Food Research, 2018, 62, e1800060.	3.3	35
124	Vaspin and amylin are expressed in human and rat placenta and regulated by nutritional status. Histology and Histopathology, 2009, 24, 979-90.	0.7	35
125	Resistin: Regulation of Food Intake, Glucose Homeostasis and Lipid Metabolism. Endocrine Development, 2009, 17, 175-184.	1.3	34
126	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34

#	Article	IF	CITATIONS
127	Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nature Reviews Endocrinology, 2021, 17, 745-755.	9.6	34
128	Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling. Molecular Therapy, 2015, 23, 1003-1021.	8.2	33
129	Serum Adipsin Levels throughout Normal Pregnancy and Preeclampsia. Scientific Reports, 2016, 6, 20073.	3.3	33
130	Antiobesity efficacy of GLPâ€1 receptor agonist liraglutide is associated with peripheral tissueâ€specific modulation of lipid metabolic regulators. BioFactors, 2016, 42, 600-611.	5.4	33
131	Metabolic effects of diets differing in glycaemic index depend on age and endogenous glucose-dependent insulinotrophic polypeptide in mice. Diabetologia, 2009, 52, 2159-2168.	6.3	32
132	Glucagon Control on Food Intake and Energy Balance. International Journal of Molecular Sciences, 2019, 20, 3905.	4.1	32
133	Central nicotine induces browning through hypothalamic κ opioid receptor. Nature Communications, 2019, 10, 4037.	12.8	32
134	Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism, 2021, 33, 1820-1835.e9.	16.2	32
135	Orexins (hypocretins) actions on the GHRH/somatostatinâ€GH axis. Acta Physiologica, 2010, 198, 325-334.	3.8	31
136	Ghrelin, peptide YY and their hypothalamic targets differentially regulate spontaneous physical activity. Physiology and Behavior, 2011, 105, 52-61.	2.1	31
137	Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. Journal of Clinical Investigation, 2021, 131, .	8.2	31
138	Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis. Journal of Hepatology, 2022, 77, 15-28.	3.7	31
139	Angiocrine polyamine production regulates adiposity. Nature Metabolism, 2022, 4, 327-343.	11.9	31
140	The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System. Journal of Biological Chemistry, 2012, 287, 38379-38389.	3.4	30
141	p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.	5.6	30
142	Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Scientific Reports, 2014, 4, 4264.	3.3	29
143	Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin-dependent manner. European Journal of Nutrition, 2016, 55, 529-536.	3.9	29
144	SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice. Genes and Nutrition, 2018, 13, 28.	2.5	29

9

#	Article	IF	CITATIONS
145	Hypothalamic kappa opioid receptor mediates both dietâ€induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology, 2016, 64, 1086-1104.	7.3	28
146	Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Molecular Metabolism, 2018, 8, 132-143.	6.5	28
147	Regulation of GPR55 in rat white adipose tissue and serum LPI by nutritional status, gestation, gender and pituitary factors. Molecular and Cellular Endocrinology, 2014, 383, 159-169.	3.2	27
148	Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nature Metabolism, 2019, 1, 222-235.	11.9	27
149	PKCζ-Regulated Inflammation in the Nonhematopoietic Compartment Is Critical for Obesity-Induced Glucose Intolerance. Cell Metabolism, 2010, 12, 65-77.	16.2	26
150	Review of Novel Aspects of the Regulation of Ghrelin Secretion. Current Drug Metabolism, 2014, 15, 398-413.	1.2	26
151	Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. ELife, 2020, 9, .	6.0	26
152	Gut Hormones Ghrelin, PYY, and GLP-1 in the Regulation of Energy, Balance, and Metabolism. Endocrine, 2006, 29, 61-72.	2.2	25
153	Ghrelin: New Molecular Pathways Modulating Appetite and Adiposity. Obesity Facts, 2010, 3, 3-3.	3.4	25
154	mTOR signaling in the arcuate nucleus of the hypothalamus mediates the anorectic action of estradiol. Journal of Endocrinology, 2018, 238, 177-186.	2.6	25
155	Growth Hormone Secretagogue (Ghrelin-) Receptors - A Complex Drug Target for the Regulation of Body Weight. CNS and Neurological Disorders - Drug Targets, 2006, 5, 335-343.	1.4	24
156	Chronic Sympathoexcitation through Loss of Vav3, a Rac1 Activator, Results in Divergent Effects on Metabolic Syndrome and Obesity Depending on Diet. Cell Metabolism, 2013, 18, 199-211.	16.2	24
157	BMP8 and activated brown adipose tissue in human newborns. Nature Communications, 2021, 12, 5274.	12.8	24
158	The Endocannabinoid System and the Control of Glucose Homeostasis. Journal of Neuroendocrinology, 2008, 20, 147-151.	2.6	23
159	Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice. Endocrinology, 2016, 157, 2735-2749.	2.8	23
160	Preproghrelin expression is a key target for insulin action on adipogenesis. Journal of Endocrinology, 2011, 210, R1-R7.	2.6	22
161	Angiopoietin-like protein 8/betatrophin as a new determinant of type 2 diabetes remission after bariatric surgery. Translational Research, 2017, 184, 35-44.e4.	5.0	22
162	Neddylation inhibition ameliorates steatosis in NAFLD by boosting hepatic fatty acid oxidation via the DEPTOR-mTOR axis. Molecular Metabolism, 2021, 53, 101275.	6.5	22

#	Article	IF	CITATIONS
163	Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nature Communications, 2022, 13, 1096.	12.8	22
164	New Insights in Ghrelin Orexigenic Effect. Frontiers of Hormone Research, 2010, 38, 196-205.	1.0	21
165	Decreased glucose tolerance and plasma adiponectin:resistin ratio in a mouse model of post-traumatic stress disorder. Diabetologia, 2011, 54, 900-909.	6.3	21
166	Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP. Molecular Metabolism, 2014, 3, 441-451.	6.5	21
167	Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 42-50.	3.2	21
168	Absence of Intracellular Ion Channels TPC1 and TPC2 Leads to Mature-Onset Obesity in Male Mice, Due to Impaired Lipid Availability for Thermogenesis in Brown Adipose Tissue. Endocrinology, 2015, 156, 975-986.	2.8	21
169	Brain JNK and metabolic disease. Diabetologia, 2021, 64, 265-274.	6.3	21
170	Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochemical Journal, 2016, 473, 4063-4082.	3.7	20
171	Liver osteopontin is required to prevent the progression of ageâ€related nonalcoholic fatty liver disease. Aging Cell, 2020, 19, e13183.	6.7	20
172	Nicotine' actions on energy balance: Friend or foe?. , 2021, 219, 107693.		20
173	Central nervous system regulation of adipocyte metabolism. Regulatory Peptides, 2008, 149, 26-31.	1.9	19
174	The MST3/STK24 kinase mediates impaired fasting blood glucose after a high-fat diet. Diabetologia, 2017, 60, 2453-2462.	6.3	19
175	Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner. Physiology and Behavior, 2010, 99, 91-99.	2.1	18
176	Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology, 2013, 229, 275-283.	3.1	18
177	Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology, 2016, 110, 322-332.	4.1	18
178	Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nature Communications, 2020, 11, 5808.	12.8	17
179	Tanycytes in the infundibular nucleus and median eminence and their role in the blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 253-273.	1.8	17
180	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	8.2	17

#	Article	IF	CITATIONS
181	O-GlcNAcylation: A Sweet Hub in the Regulation of Glucose Metabolism in Health and Disease. Frontiers in Endocrinology, 2022, 13, 873513.	3.5	17
182	Negative energy balance and leptin regulate neuromedin-U expression in the rat pars tuberalis. Journal of Endocrinology, 2006, 190, 545-553.	2.6	16
183	The HPA axis modulates the CNS melanocortin control of liver triacylglyceride metabolism. Physiology and Behavior, 2012, 105, 791-799.	2.1	16
184	Regulation of NucB2/Nesfatin-1 throughout rat pregnancy. Physiology and Behavior, 2014, 133, 216-222.	2.1	16
185	Lack of Ovarian Secretions Reverts the Anabolic Action of Olanzapine in Female Rats. International Journal of Neuropsychopharmacology, 2017, 20, 1005-1012.	2.1	16
186	Hypothalamic Lipids: Key Regulators of Whole Body Energy Balance. Neuroendocrinology, 2017, 104, 398-411.	2.5	16
187	Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice. Metabolism: Clinical and Experimental, 2018, 87, 87-97.	3.4	16
188	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76, 11-24.	3.7	16
189	What is the real relevance of endogenous ghrelin?. Peptides, 2015, 70, 1-6.	2.4	15
190	EndoG Knockout Mice Show Increased Brown Adipocyte Recruitment in White Adipose Tissue and Improved Glucose Homeostasis. Endocrinology, 2016, 157, 3873-3887.	2.8	15
191	Melanin-Concentrating Hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake. Neuropharmacology, 2018, 130, 62-70.	4.1	15
192	Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Research, 2012, 1450, 40-48.	2.2	14
193	Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes, 2018, 9, 357.	2.4	14
194	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	3.5	14
195	Phytochemical Composition, Anti-Inflammatory and ER Stress-Reducing Potential of Sambucus ebulus L. Fruit Extract. Plants, 2021, 10, 2446.	3.5	14
196	LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner. Cells, 2022, 11, 324.	4.1	14
197	Circulating hormones and hypothalamic energy balance: regulatory gene expression in the Lou/C and Wistar rats. Journal of Endocrinology, 2006, 190, 571-579.	2.6	13
198	Regulation of lipin1 by nutritional status, adiponectin, sex and pituitary function in rat white adipose tissue. Physiology and Behavior, 2012, 105, 777-783.	2.1	13

#	Article	IF	CITATIONS
199	Acute but not chronic activation of brain glucagonâ€like peptideâ€1 receptors enhances glucoseâ€stimulated insulin secretion in mice. Diabetes, Obesity and Metabolism, 2015, 17, 789-799.	4.4	13
200	Metabolic Landscape of the Mouse Liver by Quantitative 31P Nuclear Magnetic Resonance Analysis of the Phosphorome. Hepatology, 2021, 74, 148-163.	7.3	13
201	Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation. IScience, 2021, 24, 102071.	4.1	13
202	MECHANISMS IN ENDOCRINOLOGY: The gut–brain axis: regulating energy balance independent of food intake. European Journal of Endocrinology, 2021, 185, R75-R91.	3.7	13
203	Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metabolism, 2022, 34, 269-284.e9.	16.2	13
204	Longitudinal analysis of maternal serum Follistatin concentration in normal pregnancy and preeclampsia. Clinical Endocrinology, 2015, 83, 229-235.	2.4	12
205	Come to Where Insulin Resistance Is, Come to AMPK Country. Cell Metabolism, 2015, 21, 663-665.	16.2	12
206	Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Scientific Reports, 2016, 6, 37992.	3.3	12
207	Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test. Scientific Reports, 2016, 6, 31661.	3.3	12
208	Regulation of Peroxisome Proliferator Activated Receptor-gamma in Rat Pituitary. Journal of Neuroendocrinology, 2005, 17, 292-297.	2.6	11
209	The Orexigenic Effect of Orexin-A Revisited: Dependence of an Intact Growth Hormone Axis. Endocrinology, 2013, 154, 3589-3598.	2.8	11
210	Lack of Hypophagia in CB1 Null Mice is Associated to Decreased Hypothalamic POMC and CART Expression. International Journal of Neuropsychopharmacology, 2015, 18, pyv011.	2.1	11
211	GPR55 and the regulation of glucose homeostasis. International Journal of Biochemistry and Cell Biology, 2017, 88, 204-207.	2.8	11
212	ANGPTL-4 is Associated with Obesity and Lipid Profile in Children and Adolescents. Nutrients, 2019, 11, 1340.	4.1	11
213	Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opinion on Drug Discovery, 2019, 14, 421-431.	5.0	11
214	κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance. International Journal of Molecular Sciences, 2021, 22, 1515.	4.1	11
215	Activation of Hypothalamic <scp>AMPâ€Activated</scp> Protein Kinase Ameliorates Metabolic Complications of Experimental Arthritis. Arthritis and Rheumatology, 2022, 74, 212-222.	5.6	11
216	Heterozygous Deficiency of Endoglin Decreases Insulin and Hepatic Triglyceride Levels during High Fat Diet. PLoS ONE, 2013, 8, e54591.	2.5	11

#	Article	IF	CITATIONS
217	Uroguanylin: a new actor in the energy balance movie. Journal of Molecular Endocrinology, 2018, 60, R31-R38.	2.5	11
218	Central GLP-1 Actions on Energy Metabolism. Vitamins and Hormones, 2010, 84, 303-317.	1.7	9
219	The Brain: A New Organ for the Metabolic Actions of SIRT1. Hormone and Metabolic Research, 2013, 45, 960-966.	1.5	9
220	Sequential Exposure to Obesogenic Factors in Females Rats: From Physiological Changes to Lipid Metabolism in Liver and Mesenteric Adipose Tissue. Scientific Reports, 2017, 7, 46194.	3.3	9
221	Obestatin controls skeletal muscle fiber-type determination. Scientific Reports, 2017, 7, 2137.	3.3	9
222	Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1063-1078.	7.3	9
223	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
224	Hypothalamic pathways regulate the anorectic action of p-chloro-diphenyl diselenide in rats. European Journal of Pharmacology, 2017, 815, 241-250.	3.5	8
225	Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender. International Journal of Molecular Sciences, 2018, 19, 2905.	4.1	8
226	Uroguanylin Improves Leptin Responsiveness in Diet-Induced Obese Mice. Nutrients, 2019, 11, 752.	4.1	8
227	Oral Pharmacological Activation of Hypothalamic Guanylate Cyclase 2C Receptor Stimulates Brown Fat Thermogenesis to Reduce Body Weight. Neuroendocrinology, 2020, 110, 1042-1054.	2.5	8
228	Pharmacological inhibition of cannabinoid receptor 1 stimulates gastric release of nesfatin-1 via the mTOR pathway. World Journal of Gastroenterology, 2017, 23, 6403-6411.	3.3	8
229	Ghrelin plasmatic levels in patients with fibromyalgia. Rheumatology International, 2005, 25, 6-8.	3.0	7
230	Maternal Serum Meteorin Levels and the Risk of Preeclampsia. PLoS ONE, 2015, 10, e0131013.	2.5	7
231	Maternal serum omentin-1 profile is similar in humans and in the rat animal model. Cytokine, 2015, 75, 136-141.	3.2	7
232	Circulating Pro-Uroguanylin Levels In Children And Their Relation To Obesity, Sex And Puberty. Scientific Reports, 2018, 8, 14541.	3.3	7
233	p107 Deficiency Increases Energy Expenditure by Inducing Brownâ€Fat Thermogenesis and Browning of White Adipose Tissue. Molecular Nutrition and Food Research, 2019, 63, e1801096.	3.3	7
234	Serum angiopoietin-like 3 levels are elevated in obese non diabetic men but are unaffected during an oral glucose tolerance test. Scientific Reports, 2020, 10, 21118.	3.3	7

#	Article	IF	CITATIONS
235	Is LRP2 Involved in Leptin Transport over the Blood-Brain Barrier and Development of Obesity?. International Journal of Molecular Sciences, 2021, 22, 4998.	4.1	7
236	Activity-Based Anorexia Induces Browning of Adipose Tissue Independent of Hypothalamic AMPK. Frontiers in Endocrinology, 2021, 12, 669980.	3.5	7
237	Vagal afferents contribute to sympathoexcitation-driven metabolic dysfunctions. Journal of Endocrinology, 2019, 240, 483-496.	2.6	7
238	Kappa-Opioid Receptor Blockade Ameliorates Obesity Caused by Estrogen Withdrawal via Promotion of Energy Expenditure through mTOR Pathway. International Journal of Molecular Sciences, 2022, 23, 3118.	4.1	7
239	Action Profile of the Antiobesity Drug Candidate Oleoylâ€Estrone in Rats. Obesity, 2010, 18, 2260-2267.	3.0	6
240	Adipose tissue is a key organ for the beneficial effects of GLPâ€⊋ metabolic function. British Journal of Pharmacology, 2021, 178, 2131-2145.	5.4	6
241	Short regulatory DNA sequences to target brain endothelial cells for gene therapy. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 104-120.	4.3	6
242	Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Molecular Metabolism, 2022, 59, 101465.	6.5	6
243	Leptin and Fasting Regulate Rat Gastric Glucose-Regulated Protein 58. International Journal of Peptides, 2011, 2011, 1-11.	0.7	5
244	Adipocyte MTERF4 regulates non-shivering adaptive thermogenesis and sympathetic-dependent glucose homeostasis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1298-1312.	3.8	5
245	Firing Up Brown Fat with Brain Amylin. Endocrinology, 2013, 154, 2263-2265.	2.8	4
246	Endocrine control of energy homeostasis. Molecular and Cellular Endocrinology, 2015, 418, 1-2.	3.2	4
247	Hepatic p63 regulates glucose metabolism by repressing SIRT1. Gut, 2023, 72, 472-483.	12.1	4
248	Gastrointestinal signalling peptides in obesity. Drug Discovery Today Disease Mechanisms, 2006, 3, 463-470.	0.8	3
249	GLP-1: The Oracle for Gastric Bypass?. Diabetes, 2014, 63, 399-401.	0.6	3
250	Maternal Serum Angiopoietin-Like 3 Levels in Healthy and Mild Preeclamptic Pregnant Women. Frontiers in Endocrinology, 2021, 12, 670357.	3.5	3
251	Mu opioid receptor: from pain to glucose metabolism. Oncotarget, 2017, 8, 5643-5644.	1.8	3
252	Metabolic-associated fatty liver disease: From simple steatosis toward liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, organized by the Spanish Association for the Study of the Liver (AEEH). GastroenterologAa Y HepatologAa, 2022, 45, 724-734.	0.5	3

#	Article	IF	CITATIONS
253	Myeloid p38 activation maintains macrophage–liver crosstalk and BAT thermogenesis through ILâ€12–FGF21 axis. Hepatology, 2023, 77, 874-887.	7.3	3
254	Neddylation tunes peripheral blood mononuclear cells immune response in COVID-19 patients. Cell Death Discovery, 2022, 8, .	4.7	3
255	Our evolving understanding of the interaction between leptin and dopamine system to regulate ingestive behaviors. Molecular Metabolism, 2012, 1, 8-9.	6.5	2
256	Ghrelin. , 2013, , 1104-1110.		2
257	Insulinotropic Actions of GLP-1: How Much in the Brain and How Much in the Periphery?. Endocrinology, 2017, 158, 2071-2073.	2.8	2
258	Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients, 2021, 13, 4204.	4.1	2
259	Sun exposure stimulates appetite in males. Nature Metabolism, 2022, 4, 796-797.	11.9	2
260	p53 and energy balance: meeting hypothalamic AgRP neurons. Cell Stress, 2018, 2, 329-331.	3.2	1
261	An updated view on human neonatal thermogenesis. Nature Reviews Endocrinology, 2022, , .	9.6	1
262	Regulation of PRL release by cytokines and immunomodifiers: Interrelationships between leptin and prolactin secretion. Functional implications. NeuroImmune Biology, 2002, 2, 137-146.	0.2	0
263	The Role of the Gastrointestinal Hormones Ghrelin, Peptide YY, and Glucagon-like Peptide-1 in the Regulation of Energy Balance. , 2007, , 107-123.		Ο
264	GOAT: A Stomach Enzyme That Whets Our Appetite. Obesity Facts, 2008, 1, 123-126.	3.4	0
265	Gastrointestinal Signals: Stimulation. , 2009, , 577-581.		0
266	Hypothalamic Control of Food Intake and Energy Homeostasis. , 2019, , 393-397.		0
267	Growth Factors. , 2019, , 69-71.		0
268	Regulation of Body Weight Homeostasis During Pregnancy and Lactation. Research and Perspectives in Endocrine Interactions, 2002, , 91-98.	0.2	0
269	Ghrelin and Ingestive Behavior. , 2006, , 953-960.		0
270	The Central Nervous System in Metabolic Syndrome. , 2014, , 137-156.		0

#	Article	IF	CITATIONS
271	SAT-028 Leptin, Leptin Soluble Receptor and FLI in Healthy and Preeclamptic Pregnancies. Journal of the Endocrine Society, 2020, 4, .	0.2	0