Shlomo Havlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7168897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial correlations in geographical spreading of COVID-19 in the United States. Scientific Reports, 2022, 12, 699.	3.3	18
2	Reviving a failed network through microscopic interventions. Nature Physics, 2022, 18, 338-349.	16.7	25
3	Three Decades in Econophysics—From Microscopic Modelling to Macroscopic Complexity and Back. Entropy, 2022, 24, 271.	2.2	3
4	Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads. New Journal of Physics, 2022, 24, 043045.	2.9	5
5	Percolation on spatial anisotropic networks*. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 254003.	2.1	3
6	Efficient network immunization under limited knowledge. National Science Review, 2021, 8, nwaa229.	9.5	26
7	Statistical physics approaches to the complex Earth system. Physics Reports, 2021, 896, 1-84.	25.6	79
8	Network geometry. Nature Reviews Physics, 2021, 3, 114-135.	26.6	93
9	Concurrence Percolation in Quantum Networks. Physical Review Letters, 2021, 126, 170501.	7.8	10
10	Interdependent transport via percolation backbones in spatial networks. Physica A: Statistical Mechanics and Its Applications, 2021, 567, 125644.	2.6	5
11	Fresh teams are associated with original and multidisciplinary research. Nature Human Behaviour, 2021, 5, 1314-1322.	12.0	43
12	Optimal resilience of modular interacting networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
13	Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks. Scientific Reports, 2021, 11, 14479.	3.3	18
14	Connectivity of EEG synchronization networks increases for Parkinson's disease patients with freezing of gait. Communications Biology, 2021, 4, 1017.	4.4	24
15	Asymmetry in Earthquake Interevent Time Intervals. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022454.	3.4	3
16	Universal scaling of human flow remain unchanged during the COVID-19 pandemic. Applied Network Science, 2021, 6, 75.	1.5	6
17	Cascading failures in anisotropic interdependent networks of spatial modular structures. New Journal of Physics, 2021, 23, 113001.	2.9	7
18	Effects of mobility restrictions during COVID19 in Italy. Scientific Reports, 2021, 11, 21783.	3.3	12

#	Article	IF	CITATIONS
19	Network-based forecasting of climate phenomena. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
20	Mitigation of cascading failures in complex networks. Scientific Reports, 2020, 10, 16124.	3.3	27
21	Multiple metastable network states in urban traffic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17528-17534.	7.1	36
22	Spatio-temporal propagation of COVID-19 pandemics. Europhysics Letters, 2020, 131, 58003.	2.0	56
23	Realistic modelling of information spread using peer-to-peer diffusion patterns. Nature Human Behaviour, 2020, 4, 1198-1207.	12.0	18
24	Universal scaling laws of collective human flow patterns in urban regions. Scientific Reports, 2020, 10, 21405.	3.3	7
25	Epidemic spreading and control strategies in spatial modular network. Applied Network Science, 2020, 5, 95.	1.5	13
26	Cascading failures in complex networks. Journal of Complex Networks, 2020, 8, .	1.8	26
27	Robustness of interdependent networks based on bond percolation. Europhysics Letters, 2020, 130, 38003.	2.0	5
28	Distance distribution in extreme modular networks. Physical Review E, 2020, 101, 022313.	2.1	3
29	Epidemic spreading on modular networks: The fear to declare a pandemic. Physical Review E, 2020, 101, 032309.	2.1	27
30	Predictability of real temporal networks. National Science Review, 2020, 7, 929-937.	9.5	31
31	Two transitions in spatial modular networks. New Journal of Physics, 2020, 22, 053002.	2.9	8
32	Interconnections between networks acting like an external field in a first-order percolation transition. Physical Review E, 2020, 101, 022316.	2.1	16
33	Scaling laws in earthquake memory for interevent times and distances. Physical Review Research, 2020, 2, .	3.6	10
34	Spreading of localized attacks on spatial multiplex networks with a community structure. Physical Review Research, 2020, 2, .	3.6	8
35	Critical Stretching of Mean-Field Regimes in Spatial Networks. Physical Review Letters, 2019, 123, 088301.	7.8	12
36	Increasing trend of scientists to switch between topics. Nature Communications, 2019, 10, 3439.	12.8	75

#	Article	IF	CITATIONS
37	Universal behavior of cascading failures in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22452-22457.	7.1	68
38	Nontrivial resource requirement in the early stage for containment of epidemics. Physical Review E, 2019, 100, 032310.	2.1	17
39	Significant Impact of Rossby Waves on Air Pollution Detected by Network Analysis. Geophysical Research Letters, 2019, 46, 12476-12485.	4.0	28
40	Identifying long-term periodic cycles and memories of collective emotion in online social media. PLoS ONE, 2019, 14, e0213843.	2.5	15
41	Identifying the most influential roads based on traffic correlation networks. EPJ Data Science, 2019, 8,	2.8	21
42	Propinquity drives the emergence of network structure and density. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20360-20365.	7.1	6
43	Possible origin of memory in earthquakes: Real catalogs and an epidemic-type aftershock sequence model. Physical Review E, 2019, 99, 042210.	2.1	9
44	Scale-free resilience of real traffic jams. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8673-8678.	7.1	92
45	Localized attack on networks with clustering. New Journal of Physics, 2019, 21, 013014.	2.9	10
46	Switch between critical percolation modes in city traffic dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23-28.	7.1	100
47	Dynamic interdependence and competition in multilayer networks. Nature Physics, 2019, 15, 178-185.	16.7	86
48	Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome. Science Advances, 2018, 4, eaar6277.	10.3	34
49	Spontaneous repulsion in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi><mml:mo>+reaction on coupled networks. Physical Review E, 2018, 97, 040301.</mml:mo></mml:mrow></mml:math 	o> em ml:n	ni>₿
50	Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings of the United States of America, 2018, 115, 867-872.	7.1	125
51	Punishment diminishes the benefits of network reciprocity in social dilemma experiments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 30-35.	7.1	213
52	Percolation of hierarchical networks and networks of networks. Physical Review E, 2018, 98, .	2.1	18
53	Climate network percolation reveals the expansion and weakening of the tropical component under global warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12128-E12134.	7.1	26
54	A comparative analysis of approaches to network-dismantling. Scientific Reports, 2018, 8, 13513.	3.3	90

Shlomo Havlin

#	Article	lF	CITATIONS
55	Robustness of spatial networks and networks of networks. Comptes Rendus Physique, 2018, 19, 233-243.	0.9	11
56	Local structure can identify and quantify influential global spreaders in large scale social networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7468-7472.	7.1	64
57	Forecasting the magnitude and onset of El Niño based on climate network. New Journal of Physics, 2018, 20, 043036.	2.9	32
58	Interdependent networks in Economics and Finance—A Physics approach. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 612-619.	2.6	8
59	Resilience of networks with community structure behaves as if under an external field. Proceedings of the United States of America, 2018, 115, 6911-6915.	7.1	82
60	Percolation framework to describe El Ni $ ilde{A}\pm$ o conditions. Chaos, 2017, 27, 035807.	2.5	48
61	Generalized model for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi> -core percolation and interdependent networks. Physical Review E, 2017, 96, 032317.</mml:math 	2.1	16
62	Integrating networks and comparative genomics reveals retroelement proliferation dynamics in hominid genomes. Science Advances, 2017, 3, e1701256.	10.3	16
63	Spreading of localized attacks in spatial multiplex networks. New Journal of Physics, 2017, 19, 073037.	2.9	44
64	Optimal cost for strengthening or destroying a given network. Physical Review E, 2017, 95, 052305.	2.1	10
65	Network analysis reveals strongly localized impacts of El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7543-7548.	7.1	76
66	Network approaches to climate science. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	9
67	Multi-Universality and Localized Attacks in Spatially Embedded Networks. , 2017, , .		6
68	Ranking the economic importance of countries and industries. Journal of Network Theory in Finance, 2017, , .	0.7	7
69	Community Analysis of Global Financial Markets. Risks, 2016, 4, 13.	2.4	22
70	The effect of spatiality on multiplex networks. Europhysics Letters, 2016, 115, 36002.	2.0	39
71	Multiple tipping points and optimal repairing in interacting networks. Nature Communications, 2016, 7, 10850.	12.8	79
72	Explosive synchronization coexists with classical synchronization in the Kuramoto model. Chaos, 2016, 26, 065307.	2.5	45

Shlomo Havlin

#	Article	IF	CITATIONS
73	Oceanic El-Niñ0 wave dynamics and climate networks. New Journal of Physics, 2016, 18, 033021.	2.9	24
74	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>k</mml:mi> </mml:math> -core percolation on complex networks: Comparing random, localized, and targeted attacks. Physical Review E, 2016, 93, 062302.	2.1	51
75	Testing reanalysis data sets in Antarctica: Trends, persistence properties, and trend significance. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,839.	3.3	41
76	Spatio-temporal propagation of cascading overload failures in spatially embedded networks. Nature Communications, 2016, 7, 10094.	12.8	89
77	Vulnerability of Interdependent Networks and Networks of Networks. Understanding Complex Systems, 2016, , 79-99.	0.6	25
78	Recent advances on failure and recovery in networks of networks. Chaos, Solitons and Fractals, 2016, 90, 28-36.	5.1	84
79	How breadth of degree distribution influences network robustness: Comparing localized and random attacks. Physical Review E, 2015, 92, 032122.	2.1	62
80	Teleconnection Paths via Climate Network Direct Link Detection. Physical Review Letters, 2015, 115, 268501.	7.8	80
81	Critical tipping point distinguishing two types of transitions in modular network structures. Physical Review E, 2015, 92, 062805.	2.1	43
82	How does public opinion become extreme?. Scientific Reports, 2015, 5, 10032.	3.3	70
83	Resilience of networks formed of interdependent modular networks. New Journal of Physics, 2015, 17, 123007.	2.9	51
84	Recent Progress on the Resilience of Complex Networks. Energies, 2015, 8, 12187-12210.	3.1	82
85	Competing for Attention in Social Media under Information Overload Conditions. PLoS ONE, 2015, 10, e0126090.	2.5	78
86	Interdependent resistor networks with process-based dependency. New Journal of Physics, 2015, 17, 043046.	2.9	16
87	Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 669-672.	7.1	349
88	Efficiency of message transmission using biased random walks in complex networks in the presence of traps. Physical Review E, 2015, 91, 012817.	2.1	0
89	Percolation of localized attack on complex networks. New Journal of Physics, 2015, 17, 023049.	2.9	135
90	Percolation of interdependent network of networks. Chaos, Solitons and Fractals, 2015, 72, 4-19.	5.1	65

#	Article	IF	CITATIONS
91	Network science: a useful tool in economics and finance. Mind and Society, 2015, 14, 155-167.	1.3	46
92	Localized attacks on spatially embedded networks with dependencies. Scientific Reports, 2015, 5, 8934.	3.3	124
93	Partial correlation analysis: applications for financial markets. Quantitative Finance, 2015, 15, 569-578.	1.7	123
94	Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing. PLoS ONE, 2015, 10, e0141481.	2.5	8
95	Influence of autocorrelation on the topology of the climate network. Physical Review E, 2014, 90, 062814.	2.1	43
96	Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks. Physical Review X, 2014, 4, .	8.9	38
97	Structural and functional properties of spatially embedded scale-free networks. Physical Review E, 2014, 89, 062806.	2.1	22
98	Robustness of a partially interdependent network formed of clustered networks. Physical Review E, 2014, 89, 032812.	2.1	71
99	Simultaneous first- and second-order percolation transitions in interdependent networks. Physical Review E, 2014, 90, 012803.	2.1	89
100	Robustness of a network formed of spatially embedded networks. Physical Review E, 2014, 90, 012809.	2.1	47
101	Nonconsensus opinion model on directed networks. Physical Review E, 2014, 90, 052811.	2.1	14
102	From a single network to a network of networks. National Science Review, 2014, 1, 346-356.	9.5	129
103	Spontaneous recovery in dynamical networks. Nature Physics, 2014, 10, 34-38.	16.7	251
104	Very early warning of next El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2064-2066.	7.1	158
105	Percolation and cascade dynamics of spatial networks with partial dependency. Journal of Complex Networks, 2014, 2, 460-474.	1.8	34
106	Spatial correlation analysis of cascading failures: Congestions and Blackouts. Scientific Reports, 2014, 4, 5381.	3.3	102
107	On the Dynamics of Cascading Failures in Interdependent Networks. IEICE Proceeding Series, 2014, 1, 166-169.	0.0	1
108	Analytical Approach to the Robustness of Strongly Correlated Complex Networks. IEICE Proceeding Series, 2014, 1, 102-105.	0.0	0

#	Article	IF	CITATIONS
109	Non-consensus Opinion Models on Complex Networks. Journal of Statistical Physics, 2013, 151, 92-112.	1.2	46
110	The extreme vulnerability of interdependent spatially embedded networks. Nature Physics, 2013, 9, 667-672.	16.7	253
111	Improved El Niño forecasting by cooperativity detection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11742-11745.	7.1	136
112	Dominant Imprint of Rossby Waves in the Climate Network. Physical Review Letters, 2013, 111, 138501.	7.8	70
113	New tricks for big kicks. Nature Physics, 2013, 9, 69-70.	16.7	0
114	Complex networks embedded in space: Dimension and scaling relations between mass, topological distance, and Euclidean distance. Physical Review E, 2013, 87, .	2.1	30
115	Percolation of partially interdependent scale-free networks. Physical Review E, 2013, 87, 052812.	2.1	103
116	Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation. Scientific Reports, 2013, 3, 1219.	3.3	155
117	Percolation of a general network of networks. Physical Review E, 2013, 88, 062816.	2.1	103
118	Robustness of network of networks under targeted attack. Physical Review E, 2013, 87, 052804.	2.1	167
119	Interdependent Spatially Embedded Networks: Dynamics at Percolation Threshold. , 2013, , .		9
120	Percolation of interdependent networks with intersimilarity. Physical Review E, 2013, 88, 052805.	2.1	101
121	Cascading Failures in Interdependent Lattice Networks: The Critical Role of the Length of Dependency Links. Physical Review Letters, 2012, 108, 228702.	7.8	211
122	Shao, Havlin, and Stanley Reply:. Physical Review Letters, 2012, 109, .	7.8	3
123	Network physiology reveals relations between network topology and physiological function. Nature Communications, 2012, 3, 702.	12.8	548
124	How People Interact in Evolving Online Affiliation Networks. Physical Review X, 2012, 2, .	8.9	33
125	Networks formed from interdependent networks. Nature Physics, 2012, 8, 40-48.	16.7	961
126	Robustness of a Network of Networks. Physical Review Letters, 2011, 107, 195701.	7.8	509

#	Article	IF	CITATIONS
127	Robustness of interdependent networks under targeted attack. Physical Review E, 2011, 83, 065101.	2.1	408
128	Percolation of spatially constraint networks. Europhysics Letters, 2011, 93, 68004.	2.0	41
129	Dimension of spatially embedded networks. Nature Physics, 2011, 7, 481-484.	16.7	205
130	The Combined Effect of Connectivity and Dependency Links on Percolation of Networks. Journal of Statistical Physics, 2011, 145, 686-695.	1.2	34
131	Percolation in networks composed of connectivity and dependency links. Physical Review E, 2011, 83, 051127.	2.1	104
132	Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review E, 2011, 83, 036116.	2.1	315
133	Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions. Physical Review E, 2011, 84, 066116.	2.1	128
134	Mitigation of malicious attacks on networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3838-3841.	7.1	752
135	Critical effect of dependency groups on the function of networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1007-1010.	7.1	247
136	Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464, 1025-1028.	27.8	3,326
137	Epidemic Threshold for the Susceptible-Infectious-Susceptible Model on Random Networks. Physical Review Letters, 2010, 104, 258701.	7.8	170
138	Interdependent Networks: Reducing the Coupling Strength Leads to a Change from a First to Second Order Percolation Transition. Physical Review Letters, 2010, 105, 048701.	7.8	632
139	Identification of influential spreaders in complex networks. Nature Physics, 2010, 6, 888-893.	16.7	2,386
140	Structure of shells in complex networks. Physical Review E, 2009, 80, 036105.	2.1	112
141	Phone Infections. Science, 2009, 324, 1023-1024.	12.6	15
142	Fractal boundaries of complex networks. Europhysics Letters, 2008, 84, 48004.	2.0	50
143	Finding a Better Immunization Strategy. Physical Review Letters, 2008, 101, 058701.	7.8	237
144	A model of Internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11150-11154.	7.1	612

#	Article	IF	CITATIONS
145	OPTIMAL PATH AND MINIMAL SPANNING TREES IN RANDOM WEIGHTED NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2215-2255.	1.7	65
146	Long-term persistence in climate and the detection problem. Geophysical Research Letters, 2006, 33, .	4.0	119
147	Long-term persistence and multifractality of precipitation and river runoff records. Journal of Geophysical Research, 2006, 111, .	3.3	311
148	Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. Journal of Hydrology, 2006, 322, 120-137.	5.4	265
149	Origins of fractality in the growth of complex networks. Nature Physics, 2006, 2, 275-281.	16.7	512
150	Optimal path in random networks with disorder: A mini review. Physica A: Statistical Mechanics and Its Applications, 2005, 346, 82-92.	2.6	20
151	Scaling and memory in volatility return intervals in financial markets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9424-9428.	7.1	229
152	Stability and Topology of Scale-Free Networks under Attack and Defense Strategies. Physical Review Letters, 2005, 94, 188701.	7.8	248
153	Scaling of horizontal and vertical fixational eye movements. Physical Review E, 2005, 71, 031909.	2.1	31
154	Structural properties of scale-free networks. , 2004, , 85-110.		67
155	Return intervals of rare events in records with long-term persistence. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 308-314.	2.6	70
156	The effect of long-term correlations on the return periods of rare events. Physica A: Statistical Mechanics and Its Applications, 2003, 330, 1-7.	2.6	99
157	Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour. Physica A: Statistical Mechanics and Its Applications, 2003, 319, 447-457.	2.6	58
158	Nonlinearity and multifractality of climate change in the past 420,000 years. Geophysical Research Letters, 2003, 30, .	4.0	141
159	Efficient Immunization Strategies for Computer Networks and Populations. Physical Review Letters, 2003, 91, 247901.	7.8	881
160	SCALING IN THE ATMOSPHERE: ON GLOBAL LAWS OF PERSISTENCE AND TESTS OF CLIMATE MODELS. Fractals, 2003, 11, 205-216.	3.7	6
161	Scale-Free Networks Are Ultrasmall. Physical Review Letters, 2003, 90, 058701.	7.8	589
162	Optimal Paths in Disordered Complex Networks. Physical Review Letters, 2003, 91, 168701.	7.8	160

#	Article	IF	CITATIONS
163	Universality classes for self-avoiding walks in a strongly disordered system. Physical Review E, 2002, 65, 056128.	2.1	36
164	SCALING IN THE ATMOSPHERE: ON GLOBAL LAWS OF PERSISTENCE AND TESTS OF CLIMATE MODELS. , 2002, , .		1
165	Detecting long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and Its Applications, 2001, 295, 441-454.	2.6	1,164
166	Most probable paths in homogeneous and disordered lattices at finite temperature. Physica A: Statistical Mechanics and Its Applications, 2001, 297, 401-410.	2.6	2
167	"Generalized des Cloizeaux―exponent for self-avoiding walks on the incipient percolation cluster. Physical Review E, 2001, 63, 020104.	2.1	14
168	Breakdown of the Internet under Intentional Attack. Physical Review Letters, 2001, 86, 3682-3685.	7.8	1,186
169	No indications of metal-insulator transition for systems of interacting electrons in two dimensions. Physical Review B, 2001, 63, .	3.2	18
170	Localization in self-affine energy landscapes. Physical Review B, 2001, 64, .	3.2	34
171	Entropy fluctuations for directed polymers in2+1dimensions. Physical Review E, 2001, 63, 032601.	2.1	8
172	Magnitude and Sign Correlations in Heartbeat Fluctuations. Physical Review Letters, 2001, 86, 1900-1903.	7.8	361
173	Beyond 1/f: Multifractality in human heartbeat dynamics. AIP Conference Proceedings, 2000, , .	0.4	0
174	Resilience of the Internet to Random Breakdowns. Physical Review Letters, 2000, 85, 4626-4628.	7.8	1,911
175	Multifractal behavior of linear polymers in disordered media. Physical Review E, 2000, 61, 6858-6865.	2.1	36
176	Dependence of conductance on percolation backbone mass. Physical Review E, 2000, 61, 3435-3440.	2.1	14
177	Directed Polymers at Finite Temperatures in 1+1 and 2+1 Dimensionsâ€. Journal of Physical Chemistry B, 2000, 104, 3875-3880.	2.6	19
178	Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep. Physical Review Letters, 2000, 85, 3736-3739.	7.8	495
179	Traveling time and traveling length in critical percolation clusters. Physical Review E, 1999, 60, 3425-3428.	2.1	92
180	Optimal paths in disordered media: Scaling of the crossover from self-similar to self-affine behavior. Physical Review E, 1999, 60, R2448-R2451.	2.1	44

#	Article	IF	CITATIONS
181	Structural properties of invasion percolation with and without trapping: Shortest path and distributions. Physical Review E, 1999, 59, 3262-3269.	2.1	25
182	Clustering of Identical Oligomers in Coding and Noncoding DNA Sequences. Journal of Biomolecular Structure and Dynamics, 1999, 17, 79-87.	3.5	9
183	Scaling in nature: from DNA through heartbeats to weather. Physica A: Statistical Mechanics and Its Applications, 1999, 273, 46-69.	2.6	79
184	Multifractality in human heartbeat dynamics. Nature, 1999, 399, 461-465.	27.8	1,474
185	Optimizing the success of random searches. Nature, 1999, 401, 911-914.	27.8	1,370
186	Quasicrystals in a monodisperse system. Physical Review E, 1999, 60, 2664-2669.	2.1	42
187	Scaling of the Distribution of Shortest Paths in Percolation. Journal of Statistical Physics, 1998, 93, 603-613.	1.2	52
188	Stretched-exponential relaxation: The role of system size. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1323-1329.	0.6	9
189	Structure of self-avoiding walks on percolation clusters at criticality. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1357-1371.	0.6	6
190	Probability distribution of the shortest path on the percolation cluster, its backbone, and skeleton. Physical Review E, 1998, 58, R5205-R5208.	2.1	23
191	Indication of a Universal Persistence Law Governing Atmospheric Variability. Physical Review Letters, 1998, 81, 729-732.	7.8	599
192	Modeling urban growth patterns with correlated percolation. Physical Review E, 1998, 58, 7054-7062.	2.1	205
193	Optimal path in two and three dimensions. Physical Review E, 1998, 58, 7642-7644.	2.1	37
194	Power Law Scaling for a System of Interacting Units with Complex Internal Structure. Physical Review Letters, 1998, 80, 1385-1388.	7.8	231
195	Experimental studies of stratification in a granular Hele—Shaw cell. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1341-1351.	0.6	3
196	Anderson localization in a correlated landscape near the band edge. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1449-1453.	0.6	14
197	Long-range power-law correlations in local daily temperature fluctuations. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1331-1340.	0.6	56
198	Distribution of Base Pair Repeats in Coding and Noncoding DNA Sequences. Physical Review Letters, 1997, 79, 5182-5185.	7.8	44

#	Article	IF	CITATIONS
199	Spontaneous stratification in granular mixtures. Nature, 1997, 386, 379-382.	27.8	335
200	Analysis of daily temperature fluctuations. Physica A: Statistical Mechanics and Its Applications, 1996, 231, 393-396.	2.6	118
201	Scaling behaviour in the growth of companies. Nature, 1996, 379, 804-806.	27.8	637
202	Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 1996, 383, 323-327.	27.8	477
203	Method for generating long-range correlations for large systems. Physical Review E, 1996, 53, 5445-5449.	2.1	355
204	Temporal correlations in a one-dimensional sandpile model. Physical Review E, 1996, 54, 6109-6113.	2.1	10
205	Effects of bias on the kinetics ofA+B→Cwith initially separated reactants. Physical Review E, 1996, 54, 5942-5947.	2.1	19
206	A FRACTAL MODEL FOR THE FIRST STAGES OF THIN FILM GROWTH. Fractals, 1996, 04, 321-329.	3.7	11
207	CAN STATISTICAL PHYSICS CONTRIBUTE TO THE SCIENCE OF ECONOMICS?. Fractals, 1996, 04, 415-425.	3.7	37
208	Why are computer simulations of growth useful?. Materials Research Society Symposia Proceedings, 1995, 407, 391.	0.1	2
209	Influence of Spatial Correlations on Permeability and Connectivity of Sandstone. Materials Research Society Symposia Proceedings, 1995, 407, 57.	0.1	0
210	Modelling urban growth patterns. Nature, 1995, 377, 608-612.	27.8	392
211	Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 1995, 5, 82-87.	2.5	3,180
212	Are Branched Polymers in the Universality Class of Percolation?. Physical Review Letters, 1995, 74, 2714-2716.	7.8	31
213	Controlling nanostructures. Nature, 1994, 368, 22-22.	27.8	49
214	Photon Migration in a Two-layer Turbid Medium a Diffusion Analysis. Journal of Modern Optics, 1992, 39, 1567-1582.	1.3	54
215	Territory covered by N diffusing particles. Nature, 1992, 355, 423-426.	27.8	119
216	Some properties of the a+b ? C reaction-diffusion system with initially separated components. Journal of Statistical Physics, 1991, 65, 873-891.	1.2	110

#	Article	IF	CITATIONS
217	Anomalous Transport on Random Fractal Structures: Stretched Gaussians, Power‣aws and Logarithmic Time Dependences. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 1205-1208.	0.9	11
218	Transport in Random Multiplicative Correlated Systems. , 1989, , 129-146.		0
219	RANDOM WALK THEORY OF PHOTON MIGRATION IN A TURBID MEDIUM. , 1989, , 147-174.		3
220	Use of comb-like models to mimic anomalous diffusion on fractal structures. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 56, 941-947.	0.6	21
221	Biased diffusion on random structures. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 56, 821-831.	0.6	4
222	Diffusion in disordered media. Advances in Physics, 1987, 36, 695-798.	14.4	1,730
223	Epidemics on evolving networks with varying degrees. New Journal of Physics, O, , .	2.9	0