Tian-Yi Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7168568/publications.pdf

Version: 2024-02-01

331670 434195 1,763 30 21 31 citations h-index g-index papers 31 31 31 2312 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Identifying UiOâ€67 Metalâ€Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem, 2022, 15, .	6.8	6
2	Two-dimensional Zr/Hf-hydroxamate metal–organic frameworks. Chemical Communications, 2022, 58, 3601-3604.	4.1	12
3	Tuning the Lewis acidity of metal–organic frameworks for enhanced catalysis. Dalton Transactions, 2021, 50, 3116-3120.	3.3	9
4	Interplay between Intrinsic Thermal Stability and Expansion Properties of Functionalized UiO-67 Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 910-920.	6.7	17
5	Doping Effect on the Magnetism of Thiolate-Capped 25-Atom Alloy Nanoclusters. Chemistry of Materials, 2020, 32, 9238-9244.	6.7	22
6	Atom-by-Atom Evolution of the Same Ligand-Protected Au ₂₁ , Au ₂₂ , Au ₂₂ , Au ₂₂ Cd ₁ , and Au ₂₄ Nanocluster Series. Journal of the American Chemical Society, 2020, 142, 20426-20433.	13.7	36
7	Heteroatom Tracing Reveals the 30-Atom Au–Ag Bimetallic Nanocluster as a Dimeric Structure. Journal of Physical Chemistry Letters, 2020, 11, 7307-7312.	4.6	9
8	Luminescence "Turn-On―Detection of Gossypol Using Ln ³⁺ -Based Metal–Organic Frameworks and Ln ³⁺ Salts. Journal of the American Chemical Society, 2020, 142, 2897-2904.	13.7	151
9	Ship-in-a-Bottle Preparation of Long Wavelength Molecular Antennae in Lanthanide Metal–Organic Frameworks for Biological Imaging. Journal of the American Chemical Society, 2020, 142, 8776-8781.	13.7	50
10	Design, Synthesis, and Characterization of Metal–Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. Journal of Physical Chemistry C, 2019, 123, 19748-19758.	3.1	33
11	Au _{130â^³<i>x</i>} Ag _{<i>x</i>} Nanoclusters with Nonâ€Metallicity: A Drum of Silverâ€Rich Sites Enclosed in a Marksâ€Decahedral Cage of Goldâ€Rich Sites. Angewandte Chemie, 2019, 131, 18974-18978.	2.0	15
12	Au _{130â^'<i>x</i>} Ag _{<i>x</i>} Nanoclusters with Nonâ€Metallicity: A Drum of Silverâ€Rich Sites Enclosed in a Marksâ€Decahedral Cage of Goldâ€Rich Sites. Angewandte Chemie - International Edition, 2019, 58, 18798-18802.	13.8	32
13	Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chemical Science, 2019, 10, 737-742.	7.4	34
14	The effect of physical adsorption on the capacitance of activated carbon electrodes. Carbon, 2019, 150, 334-339.	10.3	8
15	One Approach for Two: Toward the Creation of Near-Infrared Imaging Agents and Rapid Screening of Lanthanide(III) Ion Sensitizers Using Polystyrene Nanobeads. ACS Applied Bio Materials, 2019, 2, 1667-1675.	4.6	8
16	Multivariate Stratified Metal–Organic Frameworks: Diversification Using Domain Building Blocks. Journal of the American Chemical Society, 2019, 141, 2161-2168.	13.7	91
17	Programmable Topology in New Families of Heterobimetallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6194-6198.	13.7	78
18	Modulating the hierarchicalÂfibrous assembly of Au nanoparticles with atomic precision. Nature Communications, 2018, 9, 3871.	12.8	77

Tian-Yi Luo

#	Article	IF	CITATION
19	A Correlated Series of Au/Ag Nanoclusters Revealing the Evolutionary Patterns of Asymmetric Ag Doping. Journal of the American Chemical Society, 2018, 140, 14235-14243.	13.7	63
20	Single-ligand exchange on an Au–Cu bimetal nanocluster and mechanism. Nanoscale, 2018, 10, 12093-12099.	5 . 6	30
21	Near infrared excitation and emission in rare earth MOFs <i>via</i> encapsulation of organic dyes. Chemical Science, 2018, 9, 8099-8102.	7.4	53
22	Rare Earth pcu Metal–Organic Framework Platform Based on RE ₄ (μ ₃ -OH) ₄ (COO) ₆ ²⁺ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. Journal of the American Chemical Society, 2017, 139, 9333-9340.	13.7	102
23	Molecular "surgery―on a 23-gold-atom nanoparticle. Science Advances, 2017, 3, e1603193.	10.3	121
24	Shuttling single metal atom into and out of a metal nanoparticle. Nature Communications, 2017, 8, 848.	12.8	77
25	Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping. Journal of the American Chemical Society, 2017, 139, 17779-17782.	13.7	84
26	Tailoring the Structure of 58-Electron Gold Nanoclusters: $Au < sub > 103 < sub > S < sub > 2 < sub > (S-Nap) < sub > 41 < sub > and Its Implications. Journal of the American Chemical Society, 2017, 139, 9994-10001.$	13.7	159
27	Establishing Porosity Gradients within Metal–Organic Frameworks Using Partial Postsynthetic Ligand Exchange. Journal of the American Chemical Society, 2016, 138, 12045-12048.	13.7	112
28	Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. ACS Nano, 2016, 10, 8385-8393.	14.6	154
29	Orthogonal Ternary Functionalization of a Mesoporous Metal–Organic Framework via Sequential Postsynthetic Ligand Exchange. Journal of the American Chemical Society, 2015, 137, 10508-10511.	13.7	96
30	TACN-containing cationic lipids with ester bond: Preparation and application in gene delivery.	2,2	23